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Categories

I A category C is a collection of objects, C0, along with
morphisms between those objects.

I The collection of morphisms from x to y in C0 we will denote
by C(x , y).

I Morphisms are composable whenever it makes sense. This
composition is associative, and each object has an identity
morphism that is neutral with respect to composition.



The Standard Examples

I Set: sets and mappings

I Veck: vector spaces (over a given field k) and linear
transformations

I veck: finite-dimensional vector spaces and linear
transformations

I Top: topological spaces and continuous maps



Important for TDA: Preordered sets

I A proset is a set P along with a relation ≤ that is
I reflexive: x ≤ x for all x ∈ P
I transitive: if x ≤ y and y ≤ z then x ≤ z .

I We often identify the proset (P,≤) with the category with
objects P, and precisely one morphism from x to y whenever
x ≤ y (otherwise none).

I (Posets are evil.)
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Another important one: Relations

I The category Rel has, as objects, all sets.

I If A and B are sets, then Rel(A,B) consists of all relations
from A to B, that is, all subsets S ⊆ A× B.

I Composition: if S ∈ Rel(A,B) and T ∈ Rel(B,C ), then

T ◦ S = {(a, c) ∈ A× C : ∃b ∈ B, (a, b) ∈ S , (b, c) ∈ T}.

I The identity relation on A is the diagonal of A× A, i.e.,
equality.

I Set is a subcategory of Rel.



Comparing Categories: Functors

Let A and C be categories.
I A functor F : A→ C consists of

I a map F0 : A0 → C0, and
I for each x , y ∈ A0, a mapping F : A(x , y)→ C(F (x),F (y));

the image of α : x → y is denoted F (α),

such that
I F preserves identities: F (1x) = 1F (x);
I F preserves composition: the diagram

F (x) F (z)

F (y)

F (β◦α)

F (α) F (β)

commutes.



Persistence modules

Let D be any category. A functor F : (R,≤)→ D is called a
persistence module. It consists of:

I for each a ∈ R, an object F (a);

I whenever a ≤ b, a morphism Fa≤b : F (a)→ F (b); these
morphisms satisfy the composition rule

Fa≤c = Fb≤c ◦ Fa≤b

whenever a ≤ b ≤ c.



Persistence modules and sub-level sets

Let us specialize to D = Top. (Can specialize further to
topological spaces and inclusions.) Let f : X → R be a function on
the topological space X .

I For a ∈ R, set F (a) = f −1((−∞, a]).

I If a ≤ b then (−∞, a] ⊆ (−∞, b], so F (a) ↪→ F (b); easy to
see functorial.

I Apply Hk(−;k) to get

H ◦ F : (R,≤)→ veck

(if X finite type).



Comparing Functors: Natural Transformations

Let F ,G : A→ C be functors. A natural transformation
α : F ⇒ G consists of, for each a ∈ A, a morphism in C,
αa : F (a)→ G (a), such that for every morphism ϕ : a→ a′ in A,
the diagram

F (a) G (a)

F (a′) G (a′)

αa

F (ϕ) G(ϕ)

αa′

commutes.



Diagram Categories

Let A and C be categories, where the objects of A form a set. The
collection of all functors F : A→ C comprise the objects of a
category, denoted by CA, with natural transformations as
morphisms. If α : F ⇒ G and β : G ⇒ H, then their (horizontal)
composition is defined componentwise by (β ◦ α)a = βa ◦ αa for all
a ∈ A.



Example: Translations

We consider the poset (R,≤).

I Let ε ≥ 0. Translation by ε is the function defined by
Tε(x) = x + ε.

I Since Tε(x) ≤ Tε(y) whenever x ≤ y , translation is in fact an
endofunctor on (R,≤).

I Since, for all x ∈ R, x ≤ Tε(x), we get a natural
transformation η : I ⇒ Tε, where I is the identity functor on
R.



Interleavings

(Chazal, Cohen-Steiner, Glisse, Guibas, Oudot 2009)

Let ε ≥ 0.

I For any persistence module F : (R,≤)→ C, the composite
F ◦ Tε is a “shifted” version of F .

I We would like to compare two modules, F ,G : (R,≤)→ C.
The idea we use is that of interleaving.

I Interleaving is a generalization of isomorphism (not quite an
equivalence relation, though).

I Will define original interleavings, then generalize.



“Classic” interleavings

I F ,G : (R,≤)→ C are ε-interleaved if there exist natural
transformations ϕ : F → G ◦ Tε and ψ : G → F ◦ Tε, such
that

I ψ ◦ ϕ = F ◦ η2ε and ϕ ◦ ψ = G ◦ η2ε.

I We should unpack this definition (to get the original).



Interleavings continued

The following diagrams commute for all a ≤ b:

F (a) G (a)

G (a + ε) F (a + ε)

F (b) G (b)

G (b + ε) F (b + ε)

Fa,b

ϕa

Ga,b

ψa

Ga+ε,b+ε Fa+ε,b+ε

ϕb ψb



Interleavings continued

The following diagrams commute for all a ∈ R:

F (a) G (a)

G (a + ε) F (a + ε)

F (a + 2ε) G (a + 2ε)

F◦η2ε,a

ϕa

G◦η2ε,a

ψa

ψa+ε
ϕa+ε



Example

Let I be any interval in R. Let kI : (R,≤)→ vec be the
“characteristic” persistence module for I :

I kI (a) = kI if a ∈ I , otherwise kI (a) = 0.

I If a ≤ b, and a, b ∈ I , then (kI )a,b = 1k.

If I has length < 2ε, then kI is ε-interleaved with the zero module.



Generalizing interleavings and Future Equivalences

Let P and Q be small categories. Consider functors F : P→ C and
G : Q→ C. The key to determining the proximity of F and G is a
notion from directed homotopy theory, namely, future equivalence.



Future Equivalences

(Grandis 2005)
A future equivalence from P to Q consists of a quadruple,
(Γ,K, η, ν), where

I Γ : P → Q and K : Q → P are functors,

I η : IP ⇒ KΓ and ν : IQ ⇒ ΓK are natural transformations,
and

I we have the coherence conditions,

Γη = νΓ : Γ⇒ ΓKΓ and Kν = ηK : K⇒ KΓK.



Interleavings of Functors

Let (Γ,K, η, ν) be a future equivalence from P to Q. We say that
functors F : P→ C and G : Q→ C are (Γ,K, η, ν)-interleaved if
there exist natural transformations

ϕ : F ⇒ GΓ and ψ : G ⇒ FK

such that ψΓϕ = Fη and ϕKψ = Gν.



Unpacking the Definitions

We get a similar bunch of diagrams that need to commute.
Whenever there is a morphism h : a→ b:

F (a) G (a)

G (Γ(a)) F (K(a))

F (b) G (b)

G (Γ(b)) F (K(b))

F (h)

ϕa

G(h)

ψa

GΓ(h) FK(h)

ϕb ψb



Still Unpacking

For all a ∈ P:

F (a) G (a)

G (Γ(a)) F (K(a))

F (KΓ(a)) G (ΓK(a))

F (ηa)

ϕa

G(νa)

ψa

ψΓ(a)
ϕK(a)



Dynamical Systems

I A discrete dynamical system is a topological space X along
with a continuous self-map f : X → X .

I From our categorical point of view, we consider a dynamical
system to be a functor F : N → Top, where N is the category
with one object x and morphisms ϕk for k ≥ 0, F (x) = X
and F (ϕ) = f .
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Shift Equivalences

Dynamical systems f : X → X and g : Y → Y are said to be shift
equivalent with lag ` if there exist continuous maps α : X → Y and
β : Y → X such that αf = gα, βg = f β, βα = f `, and αβ = g `.



Exercises

1. What are the possible functors, Γ : N → N?

2. If Γ,K : N → N and α : Γ⇒ K, what are the possibilities for
the component αx , and what does the existence of α say
about Γ and K?

3. Show that if there exists η : I⇒ ΓK, then Γ = K = I.

The future equivalences of the “dynamical system category” are all
in the natural transformations, not the translations!



Solutions

1. Γ(x) = x , Γ(ϕ) = ϕk for some k ≥ 0.

2. We must have αx = ϕm for some m ≥ 0. If Γ(ϕ) = ϕk and
K(ϕ) = ϕ`, then the diagram

x x

x x

αx

Γ(ϕ) K(ϕ)

αx

implies that k + m = `+ m, so k = `, so Γ = K.

3. From the previous exercise, ΓK = I, from which it follows that
Γ = K = I.



Abelian Categories

A category A is abelian if:

I hom (morphism) sets are abelian groups, and composition is
biadditive;

I finite direct sums and direct products exist and the natural
morphism

a⊕ b → a× b

is an isomorphism;

I every morphism has a kernel and a cokernel;

I every monomorphism is the kernel of some morphism; every
epimorphism is the cokernel of some morphism.



Kernels (and cokernels)

Let A be an abelian category. For any a, b ∈ A, we have a zero
morphism 0 : a→ b. Let f : a→ b be any morphism. We say that
i : c → a is the kernel of f if whenever the right triangle commutes,
there is a unique h : e → c making the left triangle commute.

c a b

e

i f

h 0
g

We usually abuse notation and write c = ker f .
To get the definition of cokernels, we reverse arrows.



Exercise: Kernels in Rel

The category Rel turns out to be important (Edelsbrunner et al
2015, Bauer-Lesnick 2019) in studying the partial matchings of
persistence diagrams required for calculating the bottleneck
distance.

Rel is not abelian, but it does have zero morphisms and kernels.

1. What is 0 ∈ Rel(X ,Y )?

2. Let R ⊆ Rel(X ,Y ). Find the kernel of R.



Solutions

1. 0 = ∅ ⊆ X × Y .

2. The kernel of R is the subset K of unmatched elements of X ;
the “inclusion” is the “full” relation K × X .



The Category of Interleavings

There is a category, Intε, in which the objects are ε-interleaved
pairs of persistence modules F ,G : (R,≤)→ C and morphisms are
pairs of natural transformations that make the appropriate
diagrams commute.

I If C is abelian, is Intε abelian? Yes!

I Vin de Silva saw our tedious direct proof in Bubenik-S. (2014)
and was mortified.



Interleavings Form a Diagram Category

I Vin observed that Intε is itself a diagram category, and it is a
standard exercise to show that if A is abelian and D is small,
then AD is abelian. (Everything is computed pointwise.)

I The indexing category, Iε, looks like this:

R

R
≥ ε

≥ ε
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Remarks on Interleavor Categories

I The category Iε turns out to be a Grothendieck construction,
that is, a certain pullback of categories.

I The construction works even for future equivalences of pairs
of small categories.

I Eventually leads to a Gromov-Hausdorff metric on the
category of (weighted) small categories (Bubenik, de Silva, S.,
2016)



Metrics

I The whole point of interleavings is to give a metric on
persistence modules: we say that dI (F ,G ) ≤ ε if there exists
an ε-interleaving between F and G .

I More generally, if F : P→ C and G : Q→ C are (Γ,
K)-interleaved, we need to have some sort of measure of the
translations Γ and K (or the pair).

I Will restrict our attention to the case where P is a proset,
Q = P.



Sublinear Projections

Let P be a proset. A sublinear projection is a function,
ω : TransP → [0,∞] such that

I ωI = 0, where I is the identity translation.

I ωΓK ≤ ωΓ + ωK.

Example on (R,≤):

ωΓ = sup{Γ(x)− x : x ∈ R}



Distance Associated to a Sublinear Projection

Let ω be a sublinear projection on the preordered set P.

1. Γ is an ε-translation if ωΓ ≤ ε.

2. F ,G : P→ C are ε-interleaved if F and G are
(Γ,K)-interleaved for some pair of ε-translations, Γ and K.

3. interleaving distance:

dω(F ,G ) = inf{ε ≥ 0 : F ,G ε-interleaved w.r.t. ω}



Superlinear Families

Let P be a proset.

I A superlinear family on P is a function, Ω : [0,∞)→ TransP
such that Ωε1Ωε2 ≥ Ωε1+ε2 .

I example on (R,≤): Ωε : t 7→ t + ε (called this Tε earlier).

I example on poset of subsets of a metric space X : the ε-offset
of a subset,

Aε = {x ∈ X : d(x ,A) ≤ ε}

I dΩ(F ,G ) = inf{ε : F ,G are Ωε-interleaved}.



A Theorem

(Bubenik, de Silva, S., 2014) Let ω be a sublinear projection on a
preordered set P. Suppose for every ε ≥ 0 there exists a
translation Ωε with ωΩε ≤ ε, which is ‘largest’ in the sense that
ωΓ ≤ ε implies Γ ≤ Ωε. Then ε 7→ Ωε is a superlinear family, and
the two interleaving distances are the same.

More succinctly: ω can be regarded as a functor. If ω has a right
adjoint Ω, then Ω is a superlinear family that yields the same
distance function.
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Exercises

1. Verify that
ωΓ = sup{Γ(x)− x : x ∈ R}

defines a sublinear projection on (R,≤).

2. Verify that
A 7→ Aε

defines a superlinear family on PX , the poset of subsets of the
metric space X .



Some Further Directions

I categories with flow (de Silva, Munch, Stefanou 2018)

I Kan extensions: used to extend maps from subspaces of
metric spaces (Bubenik,de Silva, Nanda 2017)

I generalized persistence diagrams: Patel 2016

I erosion distance (an interleaving-type metric for persistence
diagrams): Puuska 2017
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