Mini-Course: Category Theory in Topological Data Analysis

Jonathan Scott

Regina 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Categories

- A category C is a collection of objects, C₀, along with morphisms between those objects.
- The collection of morphisms from x to y in C₀ we will denote by C(x, y).
- Morphisms are composable whenever it makes sense. This composition is associative, and each object has an *identity morphism* that is neutral with respect to composition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Standard Examples

- Set: sets and mappings
- ► Vec_k: vector spaces (over a given field k) and linear transformations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ vec_k: finite-dimensional vector spaces and linear transformations
- **Top**: topological spaces and continuous maps

Important for TDA: Preordered sets

- ► A proset is a set P along with a relation ≤ that is
 - reflexive: $x \leq x$ for all $x \in P$
 - transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$.
- We often identify the proset (P, ≤) with the category with objects P, and precisely one morphism from x to y whenever x ≤ y (otherwise none).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Important for TDA: Preordered sets

- - reflexive: $x \le x$ for all $x \in P$
 - transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$.
- We often identify the proset (P, ≤) with the category with objects P, and precisely one morphism from x to y whenever x ≤ y (otherwise none).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Posets are evil.)

Another important one: Relations

- The category Rel has, as objects, all sets.
- If A and B are sets, then Rel(A, B) consists of all relations from A to B, that is, all subsets S ⊆ A × B.
- ▶ Composition: if $S \in \mathbf{Rel}(A, B)$ and $T \in \mathbf{Rel}(B, C)$, then

$$T \circ S = \{(a,c) \in A imes C : \exists b \in B, (a,b) \in S, (b,c) \in T\}.$$

- The identity relation on A is the diagonal of A × A, i.e., equality.
- **Set** is a subcategory of **Rel**.

Comparing Categories: Functors

Let **A** and **C** be categories.

- ▶ A functor $F : \mathbf{A} \to \mathbf{C}$ consists of
 - ▶ a map F_0 : $\mathbf{A}_0 \rightarrow \mathbf{C}_0$, and

for each x, y ∈ A₀, a mapping F : A(x, y) → C(F(x), F(y)); the image of α : x → y is denoted F(α),

such that

• *F* preserves identities: $F(1_x) = 1_{F(x)}$;

F preserves composition: the diagram

commutes.

Persistence modules

Let **D** be any category. A functor $F : (\mathbb{R}, \leq) \to \mathbf{D}$ is called a *persistence module*. It consists of:

• for each $a \in \mathbb{R}$, an object F(a);

Whenever a ≤ b, a morphism F_{a≤b} : F(a) → F(b); these morphisms satisfy the composition rule

$$F_{a\leq c}=F_{b\leq c}\circ F_{a\leq b}$$

whenever $a \leq b \leq c$.

Persistence modules and sub-level sets

Let us specialize to $\mathbf{D} = \mathbf{Top}$. (Can specialize further to topological spaces and inclusions.) Let $f : X \to \mathbb{R}$ be a function on the topological space X.

▶ For
$$a \in \mathbb{R}$$
, set $F(a) = f^{-1}((-\infty, a])$.

If a ≤ b then (-∞, a] ⊆ (-∞, b], so F(a) → F(b); easy to see functorial.

• Apply
$$H_k(-; \Bbbk)$$
 to get

$$H \circ F : (\mathbb{R}, \leq) \to \mathsf{vec}_{\Bbbk}$$

(if X finite type).

Comparing Functors: Natural Transformations

Let $F, G : \mathbf{A} \to \mathbf{C}$ be functors. A *natural transformation* $\alpha : F \Rightarrow G$ consists of, for each $a \in \mathbf{A}$, a morphism in \mathbf{C} , $\alpha_a : F(a) \to G(a)$, such that for every morphism $\varphi : a \to a'$ in \mathbf{A} , the diagram

$$egin{array}{c} F(a) & \stackrel{lpha_a}{\longrightarrow} & G(a) \ F(arphi) & & & & \downarrow^{G(arphi)} \ F(a') & \stackrel{lpha_{a'}}{\longrightarrow} & G(a') \end{array}$$

commutes.

Let **A** and **C** be categories, where the objects of **A** form a set. The collection of all functors $F : \mathbf{A} \to \mathbf{C}$ comprise the objects of a category, denoted by $\mathbf{C}^{\mathbf{A}}$, with natural transformations as morphisms. If $\alpha : F \Rightarrow G$ and $\beta : G \Rightarrow H$, then their (horizontal) composition is defined componentwise by $(\beta \circ \alpha)_a = \beta_a \circ \alpha_a$ for all $a \in \mathbf{A}$.

Example: Translations

We consider the poset (\mathbb{R}, \leq) .

- Let ε ≥ 0. Translation by ε is the function defined by T_ε(x) = x + ε.
- Since T_ε(x) ≤ T_ε(y) whenever x ≤ y, translation is in fact an endofunctor on (ℝ, ≤).
- Since, for all x ∈ ℝ, x ≤ T_ε(x), we get a natural transformation η : I ⇒ T_ε, where I is the identity functor on ℝ.

Interleavings

(Chazal, Cohen-Steiner, Glisse, Guibas, Oudot 2009)

Let $\varepsilon \geq 0$.

- For any persistence module F : (ℝ, ≤) → C, the composite F ∘ T_ε is a "shifted" version of F.
- We would like to compare two modules, F, G : (ℝ, ≤) → C. The idea we use is that of *interleaving*.
- Interleaving is a generalization of isomorphism (not quite an equivalence relation, though).

Will define original interleavings, then generalize.

"Classic" interleavings

F, G : (ℝ, ≤) → C are ε-interleaved if there exist natural transformations φ : F → G ∘ T_ε and ψ : G → F ∘ T_ε, such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$\psi \circ \varphi = F \circ \eta_{2\varepsilon}$$
 and $\varphi \circ \psi = G \circ \eta_{2\varepsilon}$.

We should unpack this definition (to get the original).

Interleavings continued

The following diagrams commute for all $a \leq b$:

イロト イヨト イヨト

Interleavings continued

The following diagrams commute for all $a \in \mathbb{R}$:

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Example

Let *I* be any interval in \mathbb{R} . Let $\Bbbk_I : (\mathbb{R}, \leq) \rightarrow \mathbf{vec}$ be the "characteristic" persistence module for *I*:

▶
$$\Bbbk_I(a) = \Bbbk_I$$
 if $a \in I$, otherwise $\Bbbk_I(a) = 0$.

▶ If
$$a \leq b$$
, and $a, b \in I$, then $(\Bbbk_I)_{a,b} = 1_{\Bbbk}$.

If I has length $< 2\varepsilon$, then \Bbbk_I is ε -interleaved with the zero module.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalizing interleavings and Future Equivalences

Let **P** and **Q** be small categories. Consider functors $F : \mathbf{P} \to \mathbf{C}$ and $G : \mathbf{Q} \to \mathbf{C}$. The key to determining the proximity of F and G is a notion from directed homotopy theory, namely, *future equivalence*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Future Equivalences

(Grandis 2005) A future equivalence from ${\bf P}$ to ${\bf Q}$ consists of a quadruple, $(\Gamma, {\rm K}, \eta, \nu),$ where

- $\Gamma: P \rightarrow Q$ and $K: Q \rightarrow P$ are functors,
- ▶ $\eta : I_P \Rightarrow K\Gamma$ and $\nu : I_Q \Rightarrow \Gamma K$ are natural transformations, and
- we have the coherence conditions,

$$\Gamma \eta = \nu \Gamma : \Gamma \Rightarrow \Gamma K \Gamma$$
 and $K \nu = \eta K : K \Rightarrow K \Gamma K$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let (Γ, K, η, ν) be a future equivalence from **P** to **Q**. We say that functors $F : \mathbf{P} \to \mathbf{C}$ and $G : \mathbf{Q} \to \mathbf{C}$ are (Γ, K, η, ν) -interleaved if there exist natural transformations

$$\varphi: F \Rightarrow G\Gamma$$
 and $\psi: G \Rightarrow FK$

such that $\psi_{\Gamma}\varphi = F\eta$ and $\varphi_{K}\psi = G\nu$.

Unpacking the Definitions

We get a similar bunch of diagrams that need to commute. Whenever there is a morphism $h: a \rightarrow b$:

Still Unpacking

For all $a \in \mathbf{P}$:

<ロト <回ト < 注ト < 注ト

æ

Dynamical Systems

A discrete dynamical system is a topological space X along with a continuous self-map f : X → X.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dynamical Systems

- A discrete dynamical system is a topological space X along with a continuous self-map f : X → X.
- From our categorical point of view, we consider a dynamical system to be a functor *F* : *N* → **Top**, where *N* is the category with one object *x* and morphisms φ^k for *k* ≥ 0, *F*(*x*) = *X* and *F*(φ) = *f*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Shift Equivalences

Dynamical systems $f : X \to X$ and $g : Y \to Y$ are said to be *shift* equivalent with lag ℓ if there exist continuous maps $\alpha : X \to Y$ and $\beta : Y \to X$ such that $\alpha f = g\alpha$, $\beta g = f\beta$, $\beta \alpha = f^{\ell}$, and $\alpha \beta = g^{\ell}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Exercises

- 1. What are the possible functors, $\Gamma: N \to N$?
- 2. If $\Gamma, K : N \to N$ and $\alpha : \Gamma \Rightarrow K$, what are the possibilities for the component α_x , and what does the existence of α say about Γ and K?
- 3. Show that if there exists $\eta : I \Rightarrow \Gamma K$, then $\Gamma = K = I$.

The future equivalences of the "dynamical system category" are all in the natural transformations, not the translations!

Solutions

1.
$$\Gamma(x) = x$$
, $\Gamma(\varphi) = \varphi^k$ for some $k \ge 0$.

2. We must have $\alpha_x = \varphi^m$ for some $m \ge 0$. If $\Gamma(\varphi) = \varphi^k$ and $K(\varphi) = \varphi^{\ell}$, then the diagram

implies that $k + m = \ell + m$, so $k = \ell$, so $\Gamma = K$.

3. From the previous exercise, $\Gamma {\rm K}={\rm I},$ from which it follows that $\Gamma={\rm K}={\rm I}.$

Abelian Categories

A category **A** is *abelian* if:

- hom (morphism) sets are abelian groups, and composition is biadditive;
- finite direct sums and direct products exist and the natural morphism

$$a \oplus b o a imes b$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is an isomorphism;

- every morphism has a kernel and a cokernel;
- every monomorphism is the kernel of some morphism; every epimorphism is the cokernel of some morphism.

Kernels (and cokernels)

Let **A** be an abelian category. For any $a, b \in \mathbf{A}$, we have a zero morphism $0: a \to b$. Let $f: a \to b$ be any morphism. We say that $i: c \to a$ is the kernel of f if whenever the right triangle commutes, there is a unique $h: e \to c$ making the left triangle commute.

We usually abuse notation and write $c = \ker f$. To get the definition of cokernels, we reverse arrows. The category **Rel** turns out to be important (Edelsbrunner *et al* 2015, Bauer-Lesnick 2019) in studying the partial matchings of persistence *diagrams* required for calculating the bottleneck distance.

Rel is not abelian, but it does have zero morphisms and kernels.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
1. What is 0 \in \operatorname{Rel}(X, Y)?
```

2. Let $R \subseteq \mathbf{Rel}(X, Y)$. Find the kernel of R.

Solutions

- 1. $0 = \emptyset \subseteq X \times Y$.
- 2. The kernel of *R* is the subset *K* of unmatched elements of *X*; the "inclusion" is the "full" relation $K \times X$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

There is a category, Int_{ε} , in which the objects are ε -interleaved pairs of persistence modules $F, G : (\mathbb{R}, \leq) \to \mathbb{C}$ and morphisms are pairs of natural transformations that make the appropriate diagrams commute.

- If **C** is abelian, is Int_{ε} abelian? Yes!
- Vin de Silva saw our tedious direct proof in Bubenik-S. (2014) and was mortified.

Interleavings Form a Diagram Category

Vin observed that Int_ε is itself a diagram category, and it is a standard exercise to show that if A is abelian and D is small, then A^D is abelian. (Everything is computed pointwise.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Interleavings Form a Diagram Category

Vin observed that Int_e is itself a diagram category, and it is a standard exercise to show that if A is abelian and D is small, then A^D is abelian. (Everything is computed pointwise.)

• The indexing category, I_{ε} , looks like this:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remarks on Interleavor Categories

- The category I_{ε} turns out to be a Grothendieck construction, that is, a certain pullback of categories.
- The construction works even for future equivalences of pairs of small categories.
- Eventually leads to a Gromov-Hausdorff metric on the category of (weighted) small categories (Bubenik, de Silva, S., 2016)

Metrics

- The whole point of interleavings is to give a metric on persistence modules: we say that d_I(F, G) ≤ ε if there exists an ε-interleaving between F and G.
- More generally, if F : P → C and G : Q → C are (Γ, K)-interleaved, we need to have some sort of measure of the translations Γ and K (or the pair).
- Will restrict our attention to the case where P is a proset,
 Q = P.

Sublinear Projections

Let **P** be a proset. A sublinear projection is a function, ω : **Trans**_P \rightarrow [0, ∞] such that

• $\omega_{\rm I} = 0$, where I is the identity translation.

$$\blacktriangleright \omega_{\Gamma K} \leq \omega_{\Gamma} + \omega_{K}.$$

Example on (\mathbb{R}, \leq) :

$$\omega_{\Gamma} = \sup\{\Gamma(x) - x : x \in \mathbb{R}\}$$

Distance Associated to a Sublinear Projection

Let ω be a sublinear projection on the preordered set **P**.

- 1. Γ is an ε -translation if $\omega_{\Gamma} \leq \varepsilon$.
- 2. $F, G : \mathbf{P} \to \mathbf{C}$ are ε -interleaved if F and G are (Γ, K) -interleaved for some pair of ε -translations, Γ and K .
- 3. interleaving distance:

$$d^{\omega}(F,G) = \inf\{\varepsilon \ge 0 : F, G \ \varepsilon \text{-interleaved w.r.t. } \omega\}$$

Superlinear Families

Let \mathbf{P} be a proset.

- ► A superlinear family on **P** is a function, $\Omega : [0, \infty) \to \text{Trans}_{P}$ such that $\Omega_{\varepsilon_1}\Omega_{\varepsilon_2} \ge \Omega_{\varepsilon_1+\varepsilon_2}$.
- example on (\mathbb{R}, \leq) : $\Omega_{\varepsilon} : t \mapsto t + \varepsilon$ (called this T_{ε} earlier).
- example on poset of subsets of a metric space X: the ε-offset of a subset,

$$A^{\varepsilon} = \{x \in X : d(x, A) \le \varepsilon\}$$

• $d^{\Omega}(F,G) = \inf\{\varepsilon : F, G \text{ are } \Omega_{\varepsilon}\text{-interleaved}\}.$

A Theorem

(Bubenik, de Silva, S., 2014) Let ω be a sublinear projection on a preordered set **P**. Suppose for every $\varepsilon \ge 0$ there exists a translation Ω_{ε} with $\omega_{\Omega_{\varepsilon}} \le \varepsilon$, which is 'largest' in the sense that $\omega_{\Gamma} \le \varepsilon$ implies $\Gamma \le \Omega_{\varepsilon}$. Then $\varepsilon \mapsto \Omega_{\varepsilon}$ is a superlinear family, and the two interleaving distances are the same.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A Theorem

(Bubenik, de Silva, S., 2014) Let ω be a sublinear projection on a preordered set **P**. Suppose for every $\varepsilon \ge 0$ there exists a translation Ω_{ε} with $\omega_{\Omega_{\varepsilon}} \le \varepsilon$, which is 'largest' in the sense that $\omega_{\Gamma} \le \varepsilon$ implies $\Gamma \le \Omega_{\varepsilon}$. Then $\varepsilon \mapsto \Omega_{\varepsilon}$ is a superlinear family, and the two interleaving distances are the same.

More succinctly: ω can be regarded as a functor. If ω has a *right adjoint* Ω , then Ω is a superlinear family that yields the same distance function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exercises

1. Verify that

$$\omega_{\Gamma} = \sup\{\Gamma(x) - x : x \in \mathbb{R}\}$$

defines a sublinear projection on (\mathbb{R}, \leq) .

2. Verify that

$$A\mapsto A^{\varepsilon}$$

defines a superlinear family on P_X , the poset of subsets of the metric space X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Some Further Directions

- categories with flow (de Silva, Munch, Stefanou 2018)
- Kan extensions: used to extend maps from subspaces of metric spaces (Bubenik,de Silva, Nanda 2017)
- generalized persistence diagrams: Patel 2016
- erosion distance (an interleaving-type metric for persistence diagrams): Puuska 2017