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How phylogenetics works

Discover when species branched apart by comparing their
genomes.
Determine pairwise ”evolutionary time” distance between gene
sequences.
Build the evolutionary tree that best reflects these pairwise
distances.
This uses the theory of maximum-likelihood estimation.



How phylogenetics breaks down

Different subsequences can suggest different evolutionary histories.
Anomalies occur because of:

Statistical artefacts
Model inadequacy
Cross-species transfer of genetic material



How phylogenetics breaks down

Detecting non-tree phenomena is hard!
Biologists analyze gene sequences in terms of trees. How to detect
non-tree phenomena, like when distantly-related plankton pass
each other DNA directly?



How phylogenetics breaks down

Idea: use topological data analysis (TDA)
Topology can complement statistics to better distinguish between
kinds of anomalies.



Where my research begins

Use persistent homology to analyze evolutionary-tree datasets.

Understand combinatorial and topological properties of the
spaces these datasets live in.
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n-trees

Definition
A rootless binary tree is an acyclic connected graph in which every
vertex is either order 1 or order 3.

Definition
A leaf in a rootless binary tree is a vertex that has exactly one
neighbour.

Definition
An n-tree is a rootless binary tree with n labelled leaves. I will later
mention rooted n-trees as well.
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Properties of n-trees

There are (2n − 5)!! = (2n − 5)(2n − 7) · ... · 5 · 3 · 1 n-trees
for each n ≥ 3.
n-trees have a dual interpretation as triangulations of convex
polygons with labelled sides.



Dual interpretation of n-trees



The collection of ∞-trees



Tree metrics

A plethora of metrics are used.
Reliable and fast-ish: quartet distance.



Quartet distance

Definition
A pair of pairs of vertices {{a, b}, {c, d}} is a quartet in a tree T
if there exists an edge e in T such that deleting e from T causes
{a, b} and {c, d} to lie in separate components.

Definition
Symmetric difference of sets 4 is given by

A4B = (A ∪ B) \ (A ∩ B).

Definition
Quartet distance between two trees S and T is defined by

d(S,T ) = |Q(S)4Q(T )|

where Q gives the set of quartets in a tree.
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Tree spaces

Let Tn be the set of n-trees, for every n ∈ N.
Let T∞ be the set of binary trees with infinitely many leaves.
Let Qn be Tn with quartet distance.



Dual interpretation of tree metrics

Quartet distance 7→ counting certain label-preserving
homotopies.
Contract exterior edges down to a point, one at a time.
If you can finish at a pair of triangles glued to one another,
one with sides a and b and the other with sides c and d , then
{{a, b}{c, d}} is a quartet in your tree.



Homology of a simplicial complex

Construct Cn as free module with n-simplices of the complex
as its basis.
Software frequently uses Z/2Z as the module ring for
computational reasons.

Construct Zn = ker ∂n, the module of n-cycles.
Construct Bn = im ∂n+1, the module of n-boundaries.
Construct Hn = Zn/Bn, the homology module.
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Homology of a simplicial complex

Hn is occupied by equivalence classes of n-cycles that
surround each n + 1-dimensional hole in the complex.
For H0, a better intuition is that elements represent connected
components of the complex.



Vietoris-Rips complex

Definition
Given a subset S of a metric space X , the Vietoris-Rips complex
Rε contains every simplex σ constructed from points in S that
satisfies the following condition:
For every a, b ∈ σ, Bε(a)

⋂
Bε(b) 6= ∅.

The homology of a filtered Vietoris-Rips complex
approximates the homology of a filtered Čech complex.
Under certain conditions, a Čech complex will have homology
isomorphic to the singular homology of X .
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Persistent homology

Begin with point cloud data.

Inflate a ε-ball at each point.
Draw an edge between points when their ε-balls intersect.
Draw an n-simplex wherever possible.
Compute the homology of this complex as ε changes.
Track when generators appear/disappear.
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Persistent homology in quartet space



Persistent homology in quartet space

Are topological features due to the dataset, or the ambient
space?
Never a problem for data embedded in Rn.



Filtration of Q5 complex



Filtration of Q6 complex



The category of tree spaces

Consider the category Q.
Objects: Qn for n = 1, 2, ....
(Quartet metric is technically undefined until Q4.)
Arrows: generated from insertion maps and deletion maps.



Deletion and insertion maps

Deletion maps are easy: there are only n of them Qn → Qn−1.
Insertion maps are not easy because there is no neutral way to
choose an insertion site.



Uniform graftings

Write S ? T to graft T onto S uniformly.

Non-commutative and non-associative.
We are interested in grafting subtrees in non-uniformly as well.



Uniform graftings

Write S ? T to graft T onto S uniformly.
Non-commutative and non-associative.

We are interested in grafting subtrees in non-uniformly as well.



Uniform graftings

Write S ? T to graft T onto S uniformly.
Non-commutative and non-associative.
We are interested in grafting subtrees in non-uniformly as well.



Uniform graftings

Distance under uniform grafting
For n-trees S and T , and for a rooted k-tree R , we have

d(gR(S), gR(T )) = k4d(S,T ).



Distance under uniform grafting

Proof.
(Sketch.) Every quartet in gR(S) will either lie entirely within one
subtree equivalent to R , or will be split across two to four such
subtrees. Quartets which are split across fewer than four subtrees
are shared by both gR(S) and gR(T ), so do not contribute to
quartet distance. A quartet that is split across four subtrees exists
in gR(S) whenever the leaves in S to which those subtrees were
grafted formed a quartet. So there are d(S,T ) possible
subtree-quartet choices in which it is possible to form a quartet
unique to gR(S) or gR(T ). There are k4 leaf choices for each such
subtree-quartet choice.
Thus d(gR(S), gR(T )) = k4d(S,T ).



“Factoring” quartet space?

This means that there will be scaled, disjoint copies of Qk in
Qn whenever k|n.
Upper bound for the number of copies:

(2n
k − 3)!! n!

n
k ! · k!n/k



“Factoring” quartet space?

I am trying to work out how the presence of these copies of
Qk lying Qn affects the persistent homology of Qn.

I conjecture that some important features of the persistent
homology of Qn depend on the factors of n.
Knowing the persistent homology of Qn will help to interpret
the barcode diagrams for natural datasets in Qn.
Approximate Qn for highly-coprime n using Qm using highly
divisible m close to n.
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Changing metrics

Quartet metric has some drawbacks, and now that I have a
better understanding of the kinds of problems that are arising,
I might choose something different.

Possibility: use a metric that is especially nice with respect to
general graftings.
Possibility: use a metric that is at least partially-defined on
T∞ and consider whether there are interesting features there
that can be described in terms of its role in a category like Q.
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Future research directions

Look for better bounds on the number of copies of Qk in Qn
when k|n.

Determine how these copies of Qk interact with each other
and surrounding space under persistent homology.
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