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Ordered groupoids

Definition
An ordered groupoid is a category G such that

1. All arrows are invertible;

2. There is a partial order relation on the arrows which extends
to the objects via the identity arrows;

3. The order is preserved by taking inverses and composition.

4. When f : A→ B and A′ ≤ A there is a unique restriction
[f |∗A′] : A′ → B ′ such that [f |∗A′] ≤ f ,

A′
[f |∗A′] //

≤≤

B ′

≤

A
f

// B

If B ′ ≤ B, we similarly have unique corestrictions written as
[B ′∗|f ].



Ordered groupoids as internal categories

We can also view this as an internal groupoid

G1 ×G0 G1
m // G1 i // G1

t //

s
// G0uoo

in the category of partially ordered sets with an additional property
corresponding to the last requirement given above: the domain

arrow G1 s //G0 is a fibration as a functor between posetal
categories.



Ordered groupoids as double categories
Another way to view this last diagram is as a double category G
where the vertical arrows give the poset structure and the
horizontal arrows give the groupoid structure. Double cells have
the following form

X
g //

•≤
��

≤

Y

•≤
��

X ′
g ′
// Y ′

(1)

Here, X ≤ X ′, Y ≤ Y ′ and g ≤ g ′.Note that in this notation, the
fact that s : G1 → G0 is a fibration corresponds to the statement
that for each diagram

X

•≤
��

X ′
g ′
// Y ′

there is a unique diagram (1).



Ordered groupoids and left cancellative categories

Lawson introduced a constructions moving between between
ordered groupoids and left cancellative categories.

lcCat is the category of left cancellative categories with functors as
morphisms.

oGpd is the category of ordered groupoids as above with double
functors as morphisms.



The functor L

The functor L : oGpd→ lcCat is defined as follows.

For an ordered groupoid G, the left cancellative category L(G) has
as objects those of G.

An arrow A→ B in L(G) is a formal composite of a horizontal
arrow in G with a vertical arrow in G: they are of the form

A
h // B ′ •

≤ // B

where h is a horizontal arrow in G and B ′ •
≤ //B is a vertical

arrow in G.



The functor L

Composition uses the restriction operation in G :

A
h // B ′

•≤
��

[k|∗B′] //

≤

C ′′

•≤
��

B
k // C ′

•≤
��
C

That is, the composition is given by A
[k|∗B′]h //C ′′ •

≤ //C .



The functor G

The functor G : lcCat→ oGpd is defined as follows.

For a left cancellative category C, the ordered groupoid G(C) has
subobjects in C as objects; i.e., they are equivalence classes of
arrows

m : A→ B

and [m : A→ B] = [m′ : A′ → B] if there is an isomorphism
k : A

∼→ A′ such that

A
k //

m ��

A′

m′��
B

commutes.



The functor G

The horizontal arrows in G(C) are equivalence classes of spans,

[m, n] : [m]→ [n]

The equivalence relation is defined so that [m, n] = [m′, n′] if and
only if there is an isomorphism h making the following diagram
commute:

A
m

yy
n

%%
ho

��
B C

A′
m′

ee

n′

99



The functor G

Composition of [k,m] and [m′, n] is defined when [m] = [m′].

There is an isomorphism h such that m′h = m, giving rise to a
diagram

k

��
m

��

h
∼

//

m′��

n

��

in C.

The composition is then [k]
[k,nh] // [nh] = [n] .



The functor G

The vertical arrows are given by

[n] •
≤ // [n′]

if there is an arrow h in C such that n = n′h; i.e., [n] ≤ [n′] as
subobjects.



The functor G

The order relation on horizontal arrows is defined by Lawson:

[m, n] ≤ [m′, n′] if there is an arrow h in C such that the diagram

A
m

yy
n

%%
h

��
B C

A′
m′

ee

n′

99

commutes.

This implies then that [m] ≤ [m′] and [n] ≤ [n′].



The functor G

This partial order is what defines the double cells in G(C) :

[m]

•≤
��

[m,n] //

≤

[m]

•≤
��

[m′]
[m′,n′]

// [n′]

Since there is at most one double cell for any frame of horizontal
and vertical arrows, the horizontal and vertical composition of
double cells is determined by the composition of the horizontal and
vertical arrows.



The 2-equivalence

These constructions induce 2-functors, which establish the
relationship between ordered groupoids and left cancellative
categories.

Theorem
The 2-functors L : oGrpd→ lcCat and G : lcCat→ oGrpd define
a 2-adjoint equivalence of 2-categories,

oGrpd ' lcCat.



Now, finally, what is an application of this equivalence?



Lawson and Steinberg define Ehresmann topologies on ordered
groupoids in terms of order (semi)ideals (i.e., down-closed subsets)
of the principal order ideal

↓ A = {a : a ≤ A}

of each object A.

These order ideals in an Ehresmann topology play the role of sieves
in a Grothendieck topology, and an Ehresmann topology on an
ordered groupoid G is then defined analogously as to how
Grothendieck topologies are defined on an ordinary category, with
pullback replaced with a certain ?-conjugation.



If f : A→ B is a morphism of G with an object Bi ≤ B, then the
?-conjugation of Bi by f is the composite of the appropriate
restriction and corestriction of f −1 and f to Bi :

Bi

•≤
��

A
f

// B
f −1

// A

=⇒

=

Ai
[Bi∗|f ] //

•≤
��

f −1?Bi?f

��
Bi

•≤
��

[f −1|∗Bi ] // Ai

•≤
��

A
f

// B
f −1

// A

Like Lawson and Steinberg, we identify the partial identity
f −1 ? Bi ? f with its object Ai . We differ, however, in that our
focus is less-so on the object Ai , and more-so on the fact that this
Ai is the source of the corestriction [Bi ∗|f ].



Why the change in focus of Ai?

This sets us up to think of these easily in the context of double
categories!

In particular:

I allows to think of Ehresmann topologies in the familiar
terminology of sieves; since our vertical category is posetal,
order ideals are exactly sieves of vertical arrows

I ?-conjugation is expressed as completion of double cells by
corestricting horizontal arrows to elements of sieves on the
codomain



Our Goal

Lawson and Steinberg then introduce Ehresmann topologies and
give a correspondence between Ehresmann topologies on ordered
groupoids and Grothendieck topologies on left cancellative
categories, and prove that any etendue is equivalent to the
category of sheaves on some Ehresmann site, by taking the an
Ehresmann site coming from a left cancellative category.

They use the comparison lemma for left cancellative sites to get
this result. We want to extend Lawson and Steinberg’s work to
include a comparison lemma for Ehresmann sites directly, and
avoid having to move into the left cancellative categories.

This will leverage our adjoint equivalence between left cancellative
categories and ordered groupoids as double categories.



Ehresmann topologies

We will compare Lawson and Steinberg’s definition of an
Ehresmann topology to our double categorical analogue.

Definition (Lawson/Steinberg)

Let (G, ◦,≤) be an ordered groupoid. An Ehresmann topology on
G is an assignment of, for each object A ∈ G, a collection T (A) of
order ideals of ↓ A – called covering ideals – satisfying three
axioms.

Definition (Double categories)

Let G be an ordered groupoid considered as a double category. An
Ehresmann topology on G is an assignment of each object A of G
to a set of vertical sieves T (A) satisfying three axioms.



Axiom (ET1)

Lawson/Steinberg:

↓ A ∈ T (A) for each object A ∈ G.

Double categories:

The trivial sieve {A′ •
≤ //A} on A is in T (A).



Axiom (ET2)

Lawson/Steinberg:

Let A and B be objects of G such that B ≤J A. Then for each
x : B ∼= A′ ≤ A and A ∈ T (A), we have x−1 ?A ? x ∈ T (B).

Double categories:

For each horizontal arrow f : A→ B and vertical covering sieve

B = {Bi •
≤ //B } ∈ T (B), we have

{Ai = hdom[Bi ∗|f ] : Bi ∈ B} ∈ T (A).



Axiom (ET3)

Lawson/Steinberg:

Let A be an object of G, let A ∈ T (e) and let BE ↓ A be an
arbitrary order ideal of ↓ A. Suppose that, for each x : B ∼= A′ ≤ A
(where A′ ∈ A), we have x−1 ? B ? x ∈ T (B). Then B ∈ T (A).

Double categories:

Let B be an object and let B = {Bi •
≤ //B } be a vertical sieve on

B. If, for each horizontal arrow f : A→ B, we have
{Ai = hdom[Bi ∗|f ] : Bi ∈ B} ∈ T (A), then B ∈ T (B).



Which functors induce an equivalence of sheaf categories?

The Comparison Lemma (Kock/Moerdijk) gives five criteria that
completely characterizes such functors for Grothendieck sites.

What are the analogous criteria for characterizing such functors for
Ehresmann sites?



Criterion 1: Covering Preserving

In sites:

A functor u : (C, J)→ (C′, J ′) of sites is covering preserving means
that, if ξ ∈ J(C ), then u(ξ) ∈ J(u(C )).

In Ehresmann sites:

A double functor u : (G,T )→ (G′,T ′) of Ehresmann sites is
covering preserving means that, if A ∈ T (A), then
u(A) ∈ T (u(A)).



Criterion 2: Locally Full

In sites:

A functor u : (C, J)→ (C′, J ′) of sites is locally full means that, if
g : u(C )→ u(D) is an arrow in C′, there exists a cover
(ξi : Ci → C )i∈I in C and maps (fi : Ci → D)i∈I such that
g ◦ u(ξi ) = u(fi ) for all i ∈ I .

In Ehresmann sites:

A double functor u : (G,T )→ (G′,T ′) of Ehresmann sites is
locally full means that, if g ′ : u(A)→ u(B) is a horizontal arrow in
G′, then there exists a covering vertical sieve {Ai}i∈I ∈ T (A) and a
family of horizontal arrows {fi : Ai → Bi}i∈I in G such that
[f ′|∗u(Ai )] = u(fi ) for all i ∈ I .



Criterion 3: Locally Faithful

In sites:

A functor u : (C, J)→ (C′, J ′) of sites is locally faithful means
that, if f , f ′ : C → D in C with u(f ) = u(f ′), then there exists a
cover (ξi )i∈I of C with f ◦ ξi = f ′ ◦ ξi for all i ∈ I .

In Ehresmann sites:

A double functor u : (G,T )→ (G′,T ′) of Ehresmann sites is
locally faithful means that, if f , g : A→ B are horizontal arrows in
G with u(f ) = u(g), then there exists a covering vertical sieve
{Ai}i∈I ∈ T (A) with [f |∗Ai ] = [g |∗Ai ] for all i ∈ I .



Criterion 4: Locally Surjective on Objects

In sites:

A functor u : (C, J)→ (C′, J ′) of sites is locally surjective on
objects means that, for each object C ′ of C′, there exists a
covering family of the form (u(Ci )→ C ′)i∈I .

In Ehresmann sites:

A double functor u : (G,T )→ (G′,T ′) of Ehresmann sites is locally
surjective on objects means that, for each object A′ of G′, there is
a set {Ai}i∈I of objects in G such that {u(Ai )}i∈I ∈ T ′(A′).



Criterion 5: Co-continuous

In sites:

A functor u : (C, J)→ (C′, J ′) of sites is co-continuous means that
if (ξi : C ′i → u(C ))i∈I is a cover in C′, then the set of arrows
f : D → C in C, such that u(f ) factors through some ξi , covers C
in C.

In Ehresmann sites:

A double functor u : (G,T )→ (G′,T ′) of Ehresmann sites is
co-continuous means that if {A′i}i∈I ∈ T (u(A)) is a covering
vertical sieve of u(A) in G′, then the set
{Aj ≤ A : u(Aj) ≤ A′i for some i ∈ I} is a covering vertical sieve of
A in G.



Theorem (Comparison Lemma for Sites)

Let u : (C, J)→ (C′, J ′) be a functor of essentially small sites. If u
satisfies (1) – (4), then if F is a sheaf on G′, then Fu is a sheaf on
G (i.e., u is continuous), and the functor u∗ : sh(C′, J ′)→ sh(C, J)
is full and faithful. If further u satisfies (5), then u∗ is an
equivalence.

Given the criteria expressed in the language of Ehresmann sites,
the statement of a new comparison lemma is straight forward.

Theorem (Comparison Lemma for Ehresmann Sites)

Let u : (G,T )→ (G′,T ′) be a functor of Ehresmann sites. If u
satisfies (1) – (4), then if F is a sheaf on G′, then Fu is a sheaf on
G (i.e., u is continuous), and the functor
u∗ : sh(G′,T ′)→ sh(G,T ) is full and faithful. If further u satisfies
(5), then u∗ is an equivalence.


