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Topological Robotics

A new discipline at the intersection of topology, engineering and
computer science that

1. studies pure topological problems inspired by robotics and
2. uses topological ideas and algebraic topology tools to solve

problems of robotics.



Motion Planning Problem (MPP)

Robot: A mechanical system capable of moving
autonomously.

Physical space: The real world X where the robot can move.
MPP: Given an initial position A and a final position B,

find a path in X that moves the robot from A to
B.
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Several robots



Configuration Space

A configuration is a specific state of a system; and the
configuration space is the collection of all possible configurations
for a given system.

Example
If a point robot moves in a physical space X, then the
configuration space C1(X) is just X.

state of the system = position of the robot



Configuration Space - two robots

Example
If two robots move in a physical space X, then the configuration
space C2(X) = X × X −∆

state of the system = combined position of both robots



Motion Planning Algorithm (MPA)

A MPA is a function that assigns to each pair of configurations A
and B, a continuous motion α from A to B.

Definition
Let PX be the space of paths in X and ev : PX → X × X be the
evaluation map, ev(α) = (α(0), α(1)). A MPA is a section
s : X × X → PX of ev, i.e. ev ◦ s = id.



Does this section exist?

▶ If the space is connected, yes. Otherwise, there is no MPA.
▶ But even when the section exists, a fundamental question

related to the stability of robot behavior is about its
continuity.

Theorem (Farber)
A continuous motion planning algorithm s : X × X → PX exists if
and only if the space X is contractible.
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Farber’s Topological Complexity

Definition
The topological complexity TC(X) is the least integer k such that
X × X may be covered by k open sets {U1, . . . ,Uk}, on each of
which there is a continuous section si : Ui → PX such that

ev ◦ si = iUi : Ui ↪→ X × X.

If no such integer exists then we set TC(X) = ∞.

Topological complexity is a homotopy invariant.



TC(S1) = 2

Domains of continuity:
1. U = {(x, y) ∈ S1 × S1| x is not antipodal to y}
2. V = {(x, y) ∈ S1 × S1| x is not equal to y}

MPA:
1. s1 : U → PX such that s1(A,B) =shortest path between A

and B.
2. s2 : V → PX such that s2(A,B) =counterclockwise path

between A and B.



TC as a sectional category

Definition (1930)
The Lusternik-Schnirelmann category of a space X, cat(X), is the
least integer k such that X may be covered by k open sets
{U1, . . . ,Uk}, each of which is contractible in X.

Definition (1960)
The sectional category of a fibration p : E → B, secat(p), is the
least integer k such that B may be covered by k open sets
{U1, . . . ,Uk} on each of which there exists a map s : Ui → E such
that ps = iUi : Ui ↪→ B.

We have that TC(X) = secat(ev : PX → X × X)



A group G acting on the space X

Translation groupoid G ⋉ X with
objects (G ⋉ X)0 = X
arrows (G ⋉ X)1 = G × X

Equivariant map φ⋉ f : G ⋉ X → K ⋉ Y
f : X → Y, φ : G → K

f(gx) = φ(g)f(x)
All maps continuous.
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Notions of equivalences for group actions

1. Natural equivalence:

G ⋉ X
φ⋉f
⇄
ψ⋉h

K ⋉ Y

with (ψ⋉ h) ◦ (φ⋉ f ) ∼= idG⋉X and (φ⋉ f ) ◦ (ψ⋉ h) ∼= idK⋉Y
where ∼= means equivalent by a natural transformation.

2. Morita equivalence:

G ⋉ X J ⋉ Z φ⋉ϵ //ψ⋉σoo K ⋉ Y.

with ψ ⋉ σ and φ⋉ ϵ essential equivalences.



Essential Equivalence φ⋉ ϵ : G ⋉ X → K ⋉ Y

1. (essentially surjective) ϕ′ ◦ π is an open surjection:

X ×Y (K × Y) π //

��

K × Y ϕ′ //

p2

��

Y

X ϵ // Y
2. (fully faithful) the following diagram is a pullback:

G × X
(p2,ϕ)
��

φ×ϵ // K × Y
(p2,ϕ′)
��

X × X ϵ×ϵ // Y × Y
G × X = {((k, y), (x, x′))|y = ϵ(x), ky = ϵ(x′)}.
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An ee has to reach to all orbits and there is a bijection induced by
φ: {g ∈ G|x′ = gx} → {k ∈ K|ϵ(x′) = kϵ(x)}.



Morita Equivalence ∼

Two actions G × X → X and K × Y → Y are Morita equivalent if
there is a third action J × Z → Z and two essential equivalences

G ⋉ X J ⋉ Z φ⋉ϵ //ψ⋉σoo K ⋉ Y.

We write G ⋉ X ∼ K ⋉ Y.

Any notion relevant to the geometric object defined by the action,
should be invariant under Morita equivalence.



Examples

1. Let G be a topological group, then

e ⋉ X ∼ G ⋉ (G × X)

2. If H is a subgroup of G acting on X, then

H ⋉ X ∼ G ⋉ (G ×H X)

where [gh, x] = [g, hx].



Example Z2 ⋉ I ∼ϵ S1 ⋉ M

There is an essential equivalence between the mirror action of Z2

on the interval I = (−1, 1) and the action of S1 on the Moebius
band M.

ϵ



Examples

1. If G acts freely on X, then G ⋉ X ∼ e ⋉ X/G
2. If H ⊴ G acts freely on X, then G ⋉ X ∼ G/H ⋉ X/H



Example (Z2 × Z2)⋉ S1 ∼ Z2 ⋉ S1

There is an essential equivalence between the action of Z2 × Z2 on
the circle by rotation+reflection and the action of Z2 on S1 by just
reflection.

Z2 × Z2 = {e, ρ, σ, ρσ}

acting on S1

Z2×Z2/<ρ> =< σ >= Z2

acting on S1
/<ρ> = S1



Pronk-Scull characterization

Any essential equivalence is a composite of maps as below:

1. (quotient map) G ⋉ X → G/K ⋉ X/K
where K ⊴ G and K acts freely on X.

2. (inclusion map) K ⋉ Z → H ⋉ (H ×K Z)
where K ≤ H acting on Z and H ×K Z = H × Z/ ∼ with
[hk, z] ∼ [h, kz] for any k ∈ K.



Equivariant LS-category

The equivariant category of a G-space X, catG(X), is the least
integer k such that X may be covered by k invariant open sets
{U1, . . . ,Uk}, each of which is G-compressible into a single orbit.

That is, inclusion map i : U → X is G-homotopic to a G-map
c : U → X with c(U) ⊆ orbG(z) for some z ∈ X.

A
A
AAU �

�
���

−→iU X

orbG(z)
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Equivariant Clapp-Puppe A-category

Let A be a class of G-invariant subsets of X. The equivariant
A-category, AcatG(X), is the least integer k such that X may be
covered by k G-invariant open sets {U1, . . . ,Uk}, each
G-compressible into some space A ∈ A.

A
A
AAU �

�
���

−→iU X

A
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In particular, AcatG(X) = catG(X) when A = orbits.



The G-sectional category (Colman-Grant)

The equivariant sectional category of a G-map p : E → B,
secatG (p), is the least integer k such that B may be covered by k
invariant open sets {U1, . . . ,Uk} on each of which there exists a
G-map s : Ui → E such that ps ≃G iUi : Ui ↪→ B.

E

?

U B↪→

�
��



Equivariant Motion Planning versions

Equivariant Motion Planning Problem?



Equivariant Motion Planning versions

Equivariant Motion Planning Problem?
Given configurations c0 and c1, find a path of configurations
between a and b, such that a is in the orbit of c0 and b is in the
orbit of c1.



Equivariant Motion Planning versions

Equivariant Motion Planning Problem?

Given configurations c0 and c1, find a path α of configurations
between c0 and c1, such that the path between configurations gc0
and gc1 is gα.



Equivariant TC (Colman-Grant)

G × PX → PX, G × (X × X) → X × X,

g(γ)(t) = g(γ(t)), g(x, y) = (gx, gy).

The equivariant topological complexity of X, TCG(X), is the least
integer k such that X × X may be covered by k G-invariant open
sets {U1, . . . ,Uk}, on each of which there is a G-equivariant map
si : Ui → XI such that the diagram commutes:

PX
ev
��

Ui

si
<<xxxxxxxxx

// X × X



Equivariant TC as A-category

Theorem
For a G-space X, the following statements are equivalent:

1. TCG(X) ≤ n.
2. secatG(ev) ≤ n: there exist G-invariant open sets U1, . . . ,Uk

which cover X × X and G-equivariant sections si : Ui → XI

such that ev ◦ si is G-homotopic to Ui → X × X.
3. ∆(X)catG(X × X) ≤ n: there exist G-invariant open sets

U1, . . . ,Uk which cover X × X which are G-compressible into
∆(X).

TCG(X) is NOT invariant under Morita equivalence.



Invariant TC (Lubawski-Marzantowicz)

P′X = PX ×X/G PX =
{
(α, β) ∈ PX × PX : Gα(1) = Gβ(0)

}
ev′ : P′X → X × X given by ev(α, β) =

(
α(0), β(1)

)
is a

(G × G)-fibration.

The invariant topological complexity of X, TCG(X), is the least
integer k such that X × X may be covered by k (G × G)-invariant
open sets {U1, . . . ,Uk}, on each of which there is a
(G × G)-equivariant section si : Ui → P′X such that the diagram
commutes:

P′X
ev′

��
Ui

si
<<xxxxxxxxx

// X × X



Invariant TC as A-category

Let ∆G×G(X) be the saturation of the diagonal ∆(X) with respect
to the (G × G)-action.

Theorem
For a G-space X the following are equivalent:

1. TCG(X) ≤ n.
2. secatG×G(ev′) ≤ n: there exist (G × G)-invariant open sets

U1, . . . ,Uk which cover X × X and (G × G)-equivariant
sections si : Ui → PX′ such that ev ◦ si is (G × G)-homotopic
to the inclusion Ui → X × X.

3. ∆G×G(X)catG×G(X × X) ≤ n: there exist (G × G)-invariant
open sets U1, . . . ,Uk which cover X × X which are
(G × G)-compressible into ∆G×G(X).



Invariance under Morita equivalence

Theorem (Angel, Colman, Grant, Oprea)
Let G be a compact Lie group, H ≤ G and K ◁ G acting freely on
X. If A is a class of G-invariant subsets of X, let
A/K = {A/K | A ∈ A} and G ×H A = {G ×H A | A ∈ A}. Then

1. AcatGX =A/K catG/K(X/K)

2. AcatHX =G×HA catG(G ×H X).



Invariance under Morita equivalence

Corollary
Let G and H be compact Lie groups. If G ⋉ X ∼ H ⋉ Y, then

1. catGX = catHY
2. TCGX = TCHY



Seifert fibrations



Seifert fibrations



Seifert fibrations

catS1(S1 ×Z2 D) = catZ2D = 1

TCS1
(S1 ×Z2 D) = TCZ2D = 1


