Equivariant Motion Planning

Hellen Colman

Wright College, Chicago

A new discipline at the intersection of topology, engineering and computer science that

- 1. studies pure topological problems inspired by robotics and
- 2. uses topological ideas and algebraic topology tools to solve problems of robotics.

Motion Planning Problem (MPP)

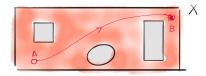
Robot: A mechanical system capable of moving autonomously.

Physical space: The real world *X* where the robot can move.

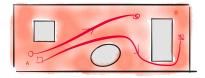
MPP: Given an initial position A and a final position B, find a path in X that moves the robot from A to B.

Motion Planning Problem (MPP)

- Robot: A mechanical system capable of moving autonomously.
- Physical space: The real world *X* where the robot can move.
 - MPP: Given an initial position A and a final position B, find a path in X that moves the robot from A to B.



Several robots

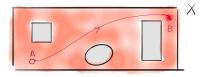


Configuration Space

A configuration is a specific state of a system; and the configuration space is the collection of all possible configurations for a given system.

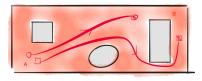
Example

If a point robot moves in a physical space X, then the configuration space $C^{1}(X)$ is just X.



state of the system = position of the robot

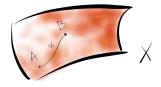
If two robots move in a physical space X, then the configuration space $C^2(X) = X \times X - \Delta$



state of the system = combined position of both robots

Motion Planning Algorithm (MPA)

A MPA is a function that assigns to each pair of configurations A and B, a continuous motion α from A to B.

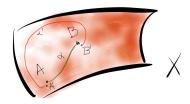


Definition

Let *PX* be the space of paths in *X* and ev : *PX* \rightarrow *X* \times *X* be the evaluation map, ev(α) = (α (0), α (1)). A MPA is a section $s : X \times X \rightarrow PX$ of ev, i.e. ev $\circ s = id$.

Does this section exist?

- If the space is connected, yes. Otherwise, there is no MPA.
- But even when the section exists, a fundamental question related to the stability of robot behavior is about its continuity.

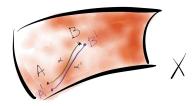


Theorem (Farber)

A continuous motion planning algorithm $s : X \times X \rightarrow PX$ exists if and only if the space X is contractible.

Does this section exist?

- If the space is connected, yes. Otherwise, there is no MPA.
- But even when the section exists, a fundamental question related to the stability of robot behavior is about its continuity.



Theorem (Farber)

A continuous motion planning algorithm $s : X \times X \rightarrow PX$ exists if and only if the space X is contractible.

Definition

The topological complexity $\mathbf{TC}(X)$ is the least integer k such that $X \times X$ may be covered by k open sets $\{U_1, \ldots, U_k\}$, on each of which there is a continuous section $s_i : U_i \to PX$ such that

$$\operatorname{ev} \circ s_i = i_{U_i} : U_i \hookrightarrow X \times X.$$

If no such integer exists then we set $TC(X) = \infty$.

Topological complexity is a homotopy invariant.

$TC(S^1) = 2$

Domains of continuity:

1.
$$U = \{(x, y) \in S^1 \times S^1 | x \text{ is not antipodal to } y\}$$

2.
$$V = \{(x, y) \in S^1 \times S^1 | x \text{ is not equal to } y\}$$

MPA:

- 1. $s_1: U \to PX$ such that $s_1(A, B) =$ shortest path between A and B.
- 2. $s_2: V \rightarrow PX$ such that $s_2(A, B) =$ counterclockwise path between A and B.

Definition (1930)

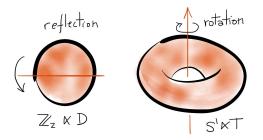
The Lusternik-Schnirelmann category of a space X, cat(X), is the least integer k such that X may be covered by k open sets $\{U_1, \ldots, U_k\}$, each of which is contractible in X.

Definition (1960)

The sectional category of a fibration $p: E \to B$, $\operatorname{secat}(p)$, is the least integer k such that B may be covered by k open sets $\{U_1, \ldots, U_k\}$ on each of which there exists a map $s: U_i \to E$ such that $ps = i_{U_i}: U_i \hookrightarrow B$.

We have that $TC(X) = secat(ev : PX \rightarrow X \times X)$

A group G acting on the space X

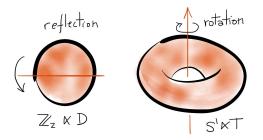


Translation groupoid $G \ltimes X$ with objects $(G \ltimes X)_0 = X$ arrows $(G \ltimes X)_1 = G \times X$ Equivariant map $\varphi \ltimes f : G \ltimes X \to K \ltimes Y$

 $f: X \to Y, \varphi: G \to K$ $f(gx) = \varphi(g)f(x)$

All maps continuous.

A group G acting on the space X



Translation groupoid $G \ltimes X$ with objects $(G \ltimes X)_0 = X$ arrows $(G \ltimes X)_1 = G \times X$ Equivariant map $\varphi \ltimes f : G \ltimes X \to K \ltimes Y$

$$f: X \to Y, \varphi: G \to K$$
$$f(gx) = \varphi(g)f(x)$$

All maps continuous.

Notions of equivalences for group actions

1. Natural equivalence:

$$G\ltimes X \mathop{\rightleftarrows}\limits_{\psi\ltimes h}^{\varphi\ltimes f} K\ltimes Y$$

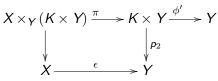
with $(\psi \ltimes h) \circ (\varphi \ltimes f) \cong id_{G \ltimes X}$ and $(\varphi \ltimes f) \circ (\psi \ltimes h) \cong id_{K \ltimes Y}$ where \cong means equivalent by a natural transformation.

2. Morita equivalence:

$$G \ltimes X \stackrel{\psi \ltimes \sigma}{\longleftarrow} J \ltimes Z \stackrel{\varphi \ltimes \epsilon}{\longrightarrow} K \ltimes Y.$$

with $\psi \ltimes \sigma$ and $\varphi \ltimes \epsilon$ essential equivalences.

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:



2. (fully faithful) the following diagram is a pullback:

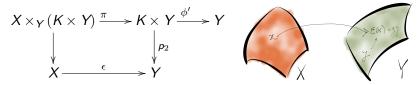
$$G \times X \xrightarrow{\varphi \times \epsilon} K \times Y$$

$$\downarrow^{(p_2,\phi)} \qquad \downarrow^{(p_2,\phi')}$$

$$X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y$$

$$G \times X = \{((k,y), (x,x')) | y = \epsilon(x), ky = \epsilon(x')\}.$$

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:



2. (fully faithful) the following diagram is a pullback:

$$\begin{array}{c} G \times X \xrightarrow{\varphi \times \epsilon} K \times Y \\ \downarrow^{(p_2,\phi)} & \downarrow^{(p_2,\phi')} \\ X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y \\ G \times X = \{((k,y),(x,x')) | y = \epsilon(x), ky = \epsilon(x')\}. \end{array}$$

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:

$$\begin{array}{ccc} X \times_Y (K \times Y) \xrightarrow{\pi} & K \times Y \xrightarrow{\phi'} & Y \\ & & & \downarrow^{p_2} \\ & X \xrightarrow{\epsilon} & Y \end{array}$$

2. (fully faithful) the following diagram is a pullback:

$$G \times X \xrightarrow{\varphi \times \epsilon} K \times Y$$

$$\downarrow^{(p_2,\phi)} \downarrow^{(p_2,\phi')}$$

$$X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y$$

$$G \times X = \{((k,y), (x,x')) | y = \epsilon(x), ky = \epsilon(x')\}.$$

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:

$$\begin{array}{ccc} X \times_Y (K \times Y) \xrightarrow{\pi} & K \times Y \xrightarrow{\phi'} & Y \\ & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ & X \xrightarrow{\epsilon} & & Y \end{array}$$

2. (fully faithful) the following diagram is a pullback:

$$G \times X \xrightarrow{\varphi \times \epsilon} K \times Y$$

$$\downarrow^{(p_2,\phi)} \qquad \qquad \downarrow^{(p_2,\phi')}$$

$$X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y$$

$$G \times X = \{((k,y), (x,x')) | y = \epsilon(x), ky = \epsilon(x')\}.$$

An ee has to reach to all orbits and there is a bijection induced by φ : $\{g \in G | x' = gx\} \rightarrow \{k \in K | \epsilon(x') = k\epsilon(x)\}.$

Two actions $G \times X \to X$ and $K \times Y \to Y$ are Morita equivalent if there is a third action $J \times Z \to Z$ and two essential equivalences

$$G \ltimes X \stackrel{\psi \ltimes \sigma}{\longleftarrow} J \ltimes Z \stackrel{\varphi \ltimes \epsilon}{\longrightarrow} K \ltimes Y.$$

We write $G \ltimes X \sim K \ltimes Y$.

Any notion relevant to the geometric object defined by the action, should be invariant under Morita equivalence.

1. Let G be a topological group, then

$$e \ltimes X \sim G \ltimes (G \times X)$$

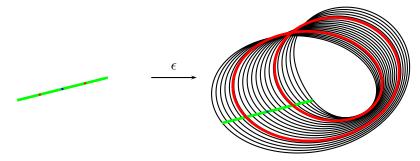
2. If H is a subgroup of G acting on X, then

$$H \ltimes X \sim G \ltimes (G \times_H X)$$

where [gh, x] = [g, hx].

Example $\mathbb{Z}_2 \ltimes I \sim_{\epsilon} S^1 \ltimes M$

There is an essential equivalence between the mirror action of \mathbb{Z}_2 on the interval I = (-1, 1) and the action of S^1 on the Moebius band M.



1. If G acts freely on X, then $G \ltimes X \sim e \ltimes X/G$ 2. If $H \trianglelefteq G$ acts freely on X, then $G \ltimes X \sim G/H \ltimes X/H$

Example $(\mathbb{Z}_2 \times \mathbb{Z}_2) \ltimes S^1 \sim \mathbb{Z}_2 \ltimes S^1$

There is an essential equivalence between the action of $\mathbb{Z}_2 \times \mathbb{Z}_2$ on the circle by rotation+reflection and the action of \mathbb{Z}_2 on S^1 by just reflection.

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{\mathbf{e}, \rho, \sigma, \rho\sigma\}$$

acting on S^1

$$\mathbb{Z}_{2} \times \mathbb{Z}_{2} / < \rho > = < \sigma > = \mathbb{Z}_{2}$$

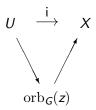
acting on ${}^{S^1}\!/_{\!<
ho>}=S^1$

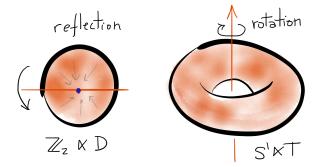
Any essential equivalence is a composite of maps as below:

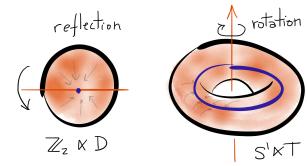
- 1. (quotient map) $G \ltimes X \to G/K \ltimes X/K$ where $K \trianglelefteq G$ and K acts freely on X.
- 2. (inclusion map) $K \ltimes Z \to H \ltimes (H \times_K Z)$ where $K \leq H$ acting on Z and $H \times_K Z = H \times Z / \sim$ with $[hk, z] \sim [h, kz]$ for any $k \in K$.

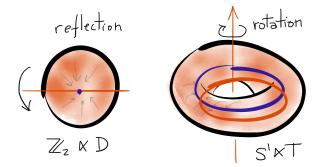
The equivariant category of a *G*-space *X*, $\operatorname{cat}_{G}(X)$, is the least integer *k* such that *X* may be covered by *k* invariant open sets $\{U_1, \ldots, U_k\}$, each of which is *G*-compressible into a single orbit.

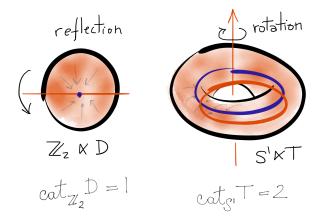
That is, inclusion map $i: U \to X$ is G-homotopic to a G-map $c: U \to X$ with $c(U) \subseteq \operatorname{orb}_{G}(z)$ for some $z \in X$.



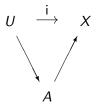






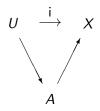


Let \mathcal{A} be a class of G-invariant subsets of X. The equivariant \mathcal{A} -category, $\mathcal{A}cat_G(X)$, is the least integer k such that X may be covered by k G-invariant open sets $\{U_1, \ldots, U_k\}$, each G-compressible into some space $A \in \mathcal{A}$.



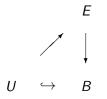
Equivariant Clapp-Puppe *A*-category

Let \mathcal{A} be a class of G-invariant subsets of X. The equivariant \mathcal{A} -category, $\mathcal{A}cat_G(X)$, is the least integer k such that X may be covered by k G-invariant open sets $\{U_1, \ldots, U_k\}$, each G-compressible into some space $A \in \mathcal{A}$.



In particular, $_{\mathcal{A}} cat_{\mathcal{G}}(X) = cat_{\mathcal{G}}(X)$ when $\mathcal{A} = orbits$.

The equivariant sectional category of a *G*-map $p: E \to B$, secat_{*G*}(*p*), is the least integer *k* such that *B* may be covered by *k* invariant open sets $\{U_1, \ldots, U_k\}$ on each of which there exists a *G*-map $s: U_i \to E$ such that $ps \simeq_G i_{U_i}: U_i \hookrightarrow B$.



Equivariant Motion Planning versions

Equivariant Motion Planning Problem?

Equivariant Motion Planning Problem?

Given configurations c_0 and c_1 , find a path of configurations between *a* and *b*, such that *a* is in the orbit of c_0 and *b* is in the orbit of c_1 .

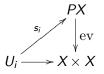
Equivariant Motion Planning Problem?

Given configurations c_0 and c_1 , find a path α of configurations between c_0 and c_1 , such that the path between configurations gc_0 and gc_1 is $g\alpha$.

Equivariant TC (Colman-Grant)

$$G \times PX \rightarrow PX,$$
 $G \times (X \times X) \rightarrow X \times X,$
 $g(\gamma)(t) = g(\gamma(t)),$ $g(x, y) = (gx, gy).$

The equivariant topological complexity of X, $\text{TC}_G(X)$, is the least integer k such that $X \times X$ may be covered by k G-invariant open sets $\{U_1, \ldots, U_k\}$, on each of which there is a G-equivariant map $s_i : U_i \to X^I$ such that the diagram commutes:



Theorem

For a G-space X, the following statements are equivalent:

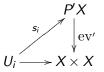
- 1. $\operatorname{TC}_{G}(X) \leq n$.
- 2. $\operatorname{secat}_{G}(ev) \leq n$: there exist G-invariant open sets U_1, \ldots, U_k which cover $X \times X$ and G-equivariant sections $s_i : U_i \to X^l$ such that $ev \circ s_i$ is G-homotopic to $U_i \to X \times X$.
- 3. $\Delta(X) \operatorname{cat}_{G}(X \times X) \leq n$: there exist *G*-invariant open sets U_1, \ldots, U_k which cover $X \times X$ which are *G*-compressible into $\Delta(X)$.

 $TC_{\mathcal{G}}(X)$ is NOT invariant under Morita equivalence.

Invariant TC (Lubawski-Marzantowicz)

$$\begin{split} & \textit{P'X} = \textit{PX} \times_{\textit{X/G}} \textit{PX} = \left\{ (\alpha,\beta) \in \textit{PX} \times \textit{PX} : \textit{G}\alpha(1) = \textit{G}\beta(0) \right\} \\ & \text{ev'} : \textit{P'X} \rightarrow \textit{X} \times \textit{X} \text{ given by } \text{ev}(\alpha,\beta) = \left(\alpha(0),\beta(1) \right) \text{ is a} \\ & (\textit{G} \times \textit{G})\text{-fibration.} \end{split}$$

The invariant topological complexity of X, $\text{TC}^{G}(X)$, is the least integer k such that $X \times X$ may be covered by k ($G \times G$)-invariant open sets { U_1, \ldots, U_k }, on each of which there is a ($G \times G$)-equivariant section $s_i : U_i \to P'X$ such that the diagram commutes:



Let $\Delta^{G \times G}(X)$ be the saturation of the diagonal $\Delta(X)$ with respect to the $(G \times G)$ -action.

Theorem

For a G-space X the following are equivalent:

- 1. $\mathrm{TC}^{G}(X) \leq n$.
- secat_{G×G}(ev') ≤ n: there exist (G × G)-invariant open sets U₁,..., U_k which cover X × X and (G × G)-equivariant sections s_i : U_i → PX' such that ev ∘ s_i is (G × G)-homotopic to the inclusion U_i → X × X.
- Δ^{G×G}(X)^{cat}_{G×G}(X × X) ≤ n: there exist (G × G)-invariant open sets U₁,..., U_k which cover X × X which are (G × G)-compressible into Δ^{G×G}(X).

Theorem (Angel, Colman, Grant, Oprea)

Let G be a compact Lie group, $H \leq G$ and $K \triangleleft G$ acting freely on X. If A is a class of G-invariant subsets of X, let $A/K = \{A/K \mid A \in A\}$ and $G \times_H A = \{G \times_H A \mid A \in A\}$. Then

1.
$$_{\mathcal{A}} \operatorname{cat}_{G} X =_{\mathcal{A}/K} \operatorname{cat}_{G/K}(X/K)$$

2. $_{\mathcal{A}}\operatorname{cat}_{\mathcal{H}} X =_{G \times_{\mathcal{H}} \mathcal{A}} \operatorname{cat}_{G} (G \times_{\mathcal{H}} X).$

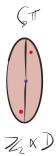
Corollary

Let G and H be compact Lie groups. If $G \ltimes X \sim H \ltimes Y$, then

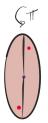
1.
$$\operatorname{cat}_{G} X = \operatorname{cat}_{H} Y$$

2.
$$\mathrm{TC}^{G}X = \mathrm{TC}^{H}Y$$

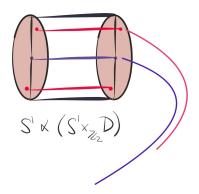
Seifert fibrations



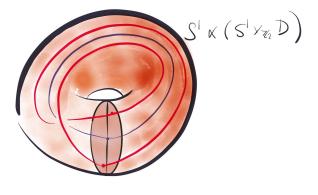
Seifert fibrations



 \mathbb{Z}_2 K \mathbb{D}



Seifert fibrations



 $\operatorname{cat}_{S^1}(S^1 \times_{\mathbb{Z}_2} D) = \operatorname{cat}_{\mathbb{Z}_2} D = 1$ $\operatorname{TC}^{S^1}(S^1 \times_{\mathbb{Z}_2} D) = \operatorname{TC}^{\mathbb{Z}_2} D = 1$