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Monads for Partial Computation

Moggi (1991) introduces monads as abstract notions of computation.

In particular, the monad
T =Par: Set — Set : A A [{x}

can be used to re-interpret a partial function of sets f : A — B as a total

function
fr . A— Par(B)
where
fr(a) = f(a) if f(a) is defined.
e * if f(a) is not defined.

Then composing partial functions can be done by composing their
corresponding Kleisi arrows.



Monads for Partial Computation

Can we use monads to encode partial computation in some category
other than set?

With what additional structure must we equip a monad
T:X—>X

to encode, in some sense, that this monad is partially defined without
requiring any additional structure on the category X itself?

We will call such a thing a restriction monad.

We need to choose that sense in which a monad is partially defined.
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Restriction Categories

Restriction monads will model partial computation in the same way that
restriction categories (Cockett and Lack) model partial maps.

A category X is called a restriction category when it can be equipped
with an assignment

(f:A=B)— (fa: A— A)

of all arrows f in X to an endomorphism f satisfying:

1. For all maps f, f fo = f.

2. Forallmaps f: A= Band g: A— B, faga = gafa.
3.

4. Forallmapsf:B—Aandg:A— B, gaf =f(gf)s.

Forallmaps f : A— Band g: A— B', gafa =84 fa.



Restriction Monads

We will define a restriction monad in a bicategory.
We need a O-cell x with a 1-cell T : x — x.

With restriction categories in mind, what additional data do we need in a
restriction monad?

» We need to assign special “endomorphisms”, so we need some data
to hold these. We use another 1-cell E : x — x for this.

» We need to be able to pick out the “source” to anchor these
endomorphisms. We use a 1-cell D : x — x.

On these data, we need a ‘restriction operator”: a 2-cell
p:D=E

with some other 2-cells so that we can express some suitable axioms
reminiscent of restriction categories.



Restriction Monads in Span(Set)

Let’s define these 2-cells, and look at the restriction axioms in the
context of an example.

If X is a restriction category, consider the (ordinary) monad R(X) in
Span(Set) corresponding to its underlying category.

T = . X1 .
XO/ \XO
X0
7721T:>TZXQ—>X1:AI—>1A XO/JW\XO
s\x /t
1

p:T?=T:C—Xy:(f,g) > gf Xo
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Example: R(X) : Xo — Xp in Span(Set)

D={(f,g) € X1 x Xy : sf =sg}



Example: R(X) : Xo — Xp in Span(Set)

o /X:L\t)
Xo Xo
where - B
Xlz{foGX}
And define
LS/X1\S
pD=E:Xi =X :f—=f Xo Jp Xo
et A



Example: R(X) : Xo — Xp in Span(Set)



Example: R(X) : Xo — Xp in Span(Set)

[14]. DE]: DE = D :E¢ — Xy : (f,g) — gFf Xo

S

Y :DT=TD:C—D:(f,g)+— (gf,f) Xo Jw Xo
D
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Example: R(X) : Xo — Xp in Span(Set)

(R1): “f = fF"

T—— 1D

g

T+—TE
wn.Te

17

fis (F )= (F,f) = ff
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Example: R(X) : Xo — Xp in Span(Set)



Example: R(X) : Xo — Xp in Span(Set)

(R3): "gf =gF"
p2 2, pE

le w DE]

E? D
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Example: R(X) : Xo — Xp in Span(Set)

(R4): “gf = fgf"

pT w.eT

DT ET T
w‘ W\M'TL
TD TE

Tp

(f,g) — (gf ,f) — (gf , f) — fgf
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From Span(Set) to rCat

In the ordinary case, there is a bijective correspondence between small
categories and monads in Span(Set).

In the case of small restriction categories and restriction monads in
Span(Set), this is weakened to an adjunction®.

This corresponds to a restriction operator being structure rather than a
property; there are many ways to equip the same category with distinct
restriction structures.

INot in bicategories, though, need to consider these as monads in double
categories a la Fiore et al.



Algebras for Restriction Monads

A right algebra (S, h) for a restriction monad consists of a 1-cell
S : x — y together with 2-cells

hT : ST = S,
hP:SD =S,
hE : SE = S and
r:D = SD.

vV v v Y

This time, r : S = SD plays the role of restriction operator when
post-composed with Sp.

As well as the usual associative and unit laws, we have a host of

restriction-category-flavoured conditions which are again best understood
in the context of an example.
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Algebras for R(X)

In Span(Set), such an algebra is a span



Algebras for R(X)

Recall that A" is simply the action of X; on A, or that algebras for T as
an ordinary monad in Span(Set) is a module.

The span morphism

Can then be post-composed with Sp :
r Sp [~
ar—— (fy,ra) ¥ (fa, ra)

So to each element of A can be associated a restriction idempotent f,.
This assignment gives the module the structure of a restriction module.



Restriction Modules

A restriction (left Y-, right X-bi)module ¢ : X—I—Y is a collection

{<)0(y7x) ty € Y07X S XO}

of sets indexed by the objects of X and Y together with:

» for all objects y,y’ € Y and x,x” € X, a pair of action maps

Ay YY) < plys x) — o(y',x)

pf,x,x’ : QD(}/,X) X X(val) — QD(}/7X/)

We will write both A(g,a) and p(a, f) using the dot notation g - «
and - f.

> a map assigning each a € ¢(y, x) to some @ : x — x in X satisfying
some conditions (next slide).
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Restriction Modules

Again, the conditions that this assignment of each « € ¢(y, x) to some
@ : x — x in X should not be too surprising.

1. for each a € p(y,x), @ = f for some f : x — x’ in X;

2. foreach o € p(y,x), a-a@ =

~ for each a € p(y,x) and B € (y',x), @0 f=PBow

4. for each a € ¢(y,x) and B3 € p(y',x), a- B =a o f3;

5. (a) foreach a € p(y,x)and f: x' = xin X,@of=foa-f;
(b) foreach a € p(y,x)andg:y -y ' in¥Y, g-a=a-g-a.
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Double Categories

We can organize these data into two double categories, related by

adjunction.
| rMon(rCat) rMod(Span(Set))
Objects Rest. Cats. Rest. Monads in Span(Set)
Vertical Arrows Rest. Functors Monad Morphisms
Horizontal Arrows Rest. Modules Algebras
Double Cells Equivariant Maps Equivariant Maps

X —M . x

Y——Y
MI

2<7~|
2<—~|

rMon(rCat) rMod(Span(Set))

And these are double restriction (bi)categories in the sense that we can

assign to each module M some M which behaves as the restriction
idempotent of M.



