Double Groups and Semigroups Science Atlantic 2014 University of New Brunswick, Saint John

> Darien DeWolf Dalhousie University

October 4, 2014

Double Groups

Definition

A double group (G, \odot, \odot) is a set G equipped with two group operations \odot and \odot that satisfy the the *middle-four interchange law:* for all $a, b, c, d \in S$,

$$(a \odot b) \odot (c \odot d) = (a \odot c) \odot (b \odot d).$$

Observation 1:

 (G, \odot, \odot) a double group.

Let 1_{\odot} be the identity for \odot and 1_{\odot} the identity for $\odot.$

$$egin{aligned} 1_\odot &= 1_\odot\odot 0_\odot\ &= (1_\odot\odot 1_\odot) \odot (1_\odot\odot 1_\odot)\ &= (1_\odot\odot 1_\odot) \odot (1_\odot\odot 1_\odot)\ &= 1_\odot\odot 1_\odot) \odot (1_\odot\odot 1_\odot)\ &= 1_\odot\odot 1_\odot\ &= 1_\odot \odot 1_\odot \end{aligned}$$

Observation 1: The identities of a double group must agree.

Observation 2:

 (G, \odot, \odot) a double group.

Let 1 be the (shared) identity for \odot and \odot .

$$egin{aligned} \mathbf{a}\odot\mathbf{b}&=(\mathbf{a}\odot\mathbf{1})\odot(\mathbf{1}\odot\mathbf{b})\ &=(\mathbf{a}\odot\mathbf{1})\odot(\mathbf{1}\odot\mathbf{b})\ &=\mathbf{a}\odot\mathbf{b} \end{aligned}$$

Observation 2: The operations of a double group must agree.

Observation 3:

 (G, \odot, \odot) a double group.

Let 1 be the (shared) identity for \odot and \circledcirc and write products by concatenation.

$$egin{aligned} \mathsf{ab} &= (1\mathsf{a})(b1) \ &= (1b)(\mathsf{a}1) \ &= b\mathsf{a} \end{aligned}$$

Observation 3: The operations of a double group must agree and must be commutative.

Eckmann-Hilton Argument: Double groups are essentially Abelian groups.

Double Semigroups

Definition

A double semigroup (S, \odot, \odot) is a set equipped with two associative binary operations satisfying the *middle-four interchange law*: for all $a, b, c, d \in S$,

$$(a \odot b) \odot (c \odot d) = (a \odot c) \odot (b \odot d).$$

• Horizontal product: $a \odot b = \begin{bmatrix} a & b \end{bmatrix}$.

• Vertical product:
$$a \odot b = \frac{a}{b}$$
.

• Middle-four:

$$\begin{array}{c|c}
a & b \\
\hline
c & d
\end{array}$$

Example

Any set D can be made into a double semigroup by equipping it with left and right projection:

$$a \odot b = a$$

 $a \odot b = b.$

Associative:

Middle-four interchange law:

$$\begin{array}{c|c} a & b \\ \hline c & d \end{array} = \begin{array}{c} b \\ \hline \end{array}$$

Darien DeWolf Dalhousie University

Theorem

For any sixteen elements a, b, ... in any double semigroup, this equation holds:

(The empty boxes represent fourteen nameless elements, that are the same on each side of the equation, and in the same order.)

a	b	
С	d	

a	b	
	С	d

a	b	d
	С	

a	b	d	
		С	

a	b	d	
		С	

a	b	d	
	С		

	b	d	
a	С		

b	d	
a	С	

b	d	
a	С	

b		
a	d	
	С	

b		
	a	d
	С	

b	a	
	С	d

b	a	
С	d	

Double Cancellative Semigroups

Definition

A semigroup S is said to be

• right cancellative if, for any $a, b, c \in S$,

ac = bc implies a = b.

• *left cancellative* if, for any
$$a, b, c \in S$$
,

ca = cb implies a = b.

• *cancellative* if both left cancellative and right cancellative.

A double semigroup is said to be cancellative if both of its operations are.

Corollary

A cancellative double semigroup D is commutative.

Proof.

Suppose that $a, b \in D$. Let $c \in D$ be any element of D. Then by Theorem 4,

c	c	c	c		c	c	c	c
c	a	b	c	=	c	b	a	c
c	c	c	c		c	c	c	c
c	c	c	c		c	c	c	c

and thus, by the definition of cancellative,

$$\begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} b & a \end{bmatrix}$$

Proposition

If (S, \odot, \odot) is a double cancellative semigroup, then $\odot = \odot$.

Proof.

Let $a, b \in S$ and consider the following sequence of tile slidings, where each blank square is some nameless semigroup element:

a	b	

a	b	

	b	
a		

b	
a	

b a	

Definition

Two elements x and y in a semigroup S are said to be *inverse* if

x = xyx and y = yxy.

- A semigroup is said to be an *inverse semigroup* if every element has a unique inverse.
- A double semigroup is said to be inverse if both of its operations are.

Theorem (Kock)

Double inverse semigroups are commutative.

Need a lemma to prove this:

Lemma

Let S be a double inverse semigroup. Then the inverse operations of S commute. That is, $a^{\odot \odot} = a^{\odot \odot}$ for all $a \in S$.

$$a^{\odot} = a^{\odot} \odot a^{\odot \odot} \odot a^{\odot?}$$

$$a^{\odot} = a^{\odot} \odot a^{\odot \odot} \odot a^{\odot}$$
? Yes.

Recall:

$$a^{\odot} = a^{\odot} \odot a^{\odot \odot} \odot a^{\odot}$$

In particular, for a^{\odot} :

$$a^{\odot \odot} = a^{\odot \odot} \odot a^{\odot} \odot a^{\odot \odot}$$

That is,

$$a^{\odot \odot} = a^{\odot \odot}$$

Fact:

Fact:

	0	0	a°	a	0
a^{\odot}	b^{\odot}	$a^{\odot \odot}$	$b^{\odot \circledcirc}$	a^{\odot}	b^{\odot}
a	b	b^{\odot}	a°	a	b

Fact:

a	b	b^{\odot}	a°	a	b
a^{\odot}	b^{\odot}	$a^{\odot \circ}$	$b^{\odot @}$	a^{\odot}	b^{\odot}
a	b	b^{\odot}	a°	a	b
a^{\odot}	b^{\odot}	$b^{\odot \odot}$	$a^{\odot \circ}$	a^{\odot}	b^{\odot}
a	b	b^{\odot}	a°	a	b

Darien DeWolf Dalhousie University

Fact:

a	b	b^{\odot}	a^{\odot}	a	b
a^{\odot}	b^{\odot}	$b^{\odot \odot}$	$a^{\odot \circ}$	a^{\odot}	b^{\odot}
a	b	b°	a°	a	b
a^{\odot}	b^{\odot}	$b^{\odot \odot}$	$a^{\odot \circ}$	a^{\odot}	b^{\odot}
a	b	b^{\odot}	a°	a	b

Darien DeWolf Dalhousie University

Fact:

Similarly, one calculates that

The vertical inverse of $a \odot b$ is $a^{\odot} \odot b^{\odot} \odot a^{\odot \odot} \odot b^{\odot \odot} \odot a^{\odot} b^{\odot}$.

Repeat to show:

The vertical inverse of $b \odot a$ is also $a^{\odot} \odot b^{\odot} \odot a^{\odot \odot} \odot b^{\odot \odot} \odot a^{\odot} b^{\odot}$.

This implies:

$$a \odot b = b \odot a$$

It can be shown that

Theorem

Double inverse semigroups are essentially commutative inverse semigroups.