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Some Definitions to Start

Definition

For any group G with g ∈ G , the right and left commutation
mappings associated with g are the mappings ρ(g) and λ(g) from
G to G defined as

(x)ρ(g) = [x , g ]

(x)λ(g) = [g , x ],

where the commutator of g and h is defined as [g , h] = g−1h−1gh.
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Definition

The set M(G ) of all mappings from G to G forms a semigroup
under composition of mappings.

Definition

The right commutation semigroup of G , P(G ), is the
subsemigroup of M(G ) generated by the set of ρ-maps and the

left commutation semigroup of G , Λ(G ), is the subsemigroup of
M(G ) generated by the set of λ-maps.
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Definition

The dihedral group of order 2m has presentation

Dm =
〈

a, b; am = 1, b2 = 1, ab = a−1
〉

,

where the conjugate of a by b is denoted ab = b−1ab.
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An Anomaly Presents Itself

Though P(G ) and Λ(G ) have apparently symmetric definitions, it
is not true in general that P(G ) = Λ(G ). In fact it is not even true
in general that P(G ) ∼= Λ(G ), for |P(D3)| = 6 6= 9 = |Λ(D3)|.
We then ask ourselves: “What conditions on the group can impose
to force its commutation semigroups to be of equal order,
isomorphic, equal?” We will focus now on dihedral groups.
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Some Preliminaries

Notation

For each s ≥ 0 let αs = (−1)s and βs = (−1)s − 1. Since the
values of αs and βs are unique up to parity, it will cause no
ambiguity to view s as an element of Z2.

Lemma

Let Dm be the dihedral group with presentation as above. For each

i , r ∈ Zm and j , s ∈ Z2 :

(aibj)ρ(arbs) = aNρ and (aibj)λ(arbs) = aNλ,

where Nρ ≡ iαjβs − rαsβj ≡ (−2)αjs(is − jr)(modm) and
Nλ ≡ −Nρ ≡ 2αjs(is − jr)(modm).
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Definition

For each pair (A,B) ∈ Zm × Zm we define a µ-map
µ(A,B) : Dm → Dm by

(aibj)µ(A,B) = aNµ , where Nµ = Aiαj − Bβj .
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Lemma

For each r ∈ Zm and s ∈ Z2,

(i) ρ(arbs) = µ(βs , rαs),

(ii) λ(arbs) = µ(−βs ,−rαs).

Lemma

For each A,A′ ∈ Zm and B ,B ′ ∈ Z2,

µ(A,B) ◦ µ(A′,B ′) = µ(AA′,BA′).
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Containers of µ-maps

Definition

If A,B ∈ Zm, the (A,B)-container is defined as

C(A,B) = {µ(A, xB) : x ∈ Zm} .
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Lemma

For all A,A′,B ,B ′ ∈ Zm, C(A,B) ∩ C(A′,B ′) 6= ∅ if and only if

A ≡ A′(modm).

Lemma

P(Dn) ⊇ {ρg} = C(0, 1) ∪̇ C(−2, 1) and
Λ(Dn) ⊇ {λg} = C(0, 1) ∪̇ C(2, 1).
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Definition

For any two containers C(A,B) and C(A′,B ′), we define their
product as:

C(A,B) ◦ C(A′,B ′) =
{

µ1 ◦ µ2 : µ1 ∈ C(A,B), µ2 ∈ C(A′,B ′)
}

.
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Lemma

For A,A′ ∈ Zm and B ,B ′ ∈ Z2, C(A,B) ◦ C(A′,B ′) = C(AA′,BA′).

Lemma

For A,B ∈ Zm,

(i) C(0, 1) ◦ C(A,B) ⊆ C(0, 1),

(ii) C(A,B) ◦ C(0, 1) ⊆ C(0, 1).
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Definition

For x ∈ Z, let indm(x) be the smallest positive integer such that
there is a perm(x) ∈ Z

+ with x indm(x) = x indm(x)+perm(x) and
perm(x) the least such positive integer. Here indm(x) and perm(x)
are called the index and the period of x ,

Lemma

If m = 2ℓn ≥ 3 with n odd, ℓ ≥ 0, and n ≥ 1, then for x ∈ {−2, 2}

(i) if m is odd, then indm(x) = 1 and perm(x) = ordm(x),

(ii) if m is even and n > 1, then indm(x) = ℓ,

(iii) if m is even and n = 1, then indm(x) = ℓ and perm(x) = 1.
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Theorem

For m = 2ℓn ≥ 3 with n odd, ℓ ≥ 0, and n ≥ 1,

(i)

P(Dm) = C(0, 1) ∪

(

t
⋃

i=1

C((−2)i , (−2)i−1)

)

,

where t =







ordm(−2) for ℓ = 0, n > 1
ℓ+ perm(−2) − 1 for ℓ > 0, n > 1

ℓ− 1 for ℓ > 0, n = 1

(ii)

Λ(Dm) = C(0, 1) ∪

(

t′
⋃

i=1

C(2i , 2i−1)

)

,

where t ′ =







ordm(2) for ℓ = 0, n > 1
ℓ+ perm(2)− 1 for ℓ > 0, n > 1

ℓ− 1 for ℓ > 0, n = 1
,

and these unions are disjoint.
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Definition

The upper central series of a group G is the series of subgroups of
G ,

Z0(G ) ≤ Z1(G ) ≤ · · · ≤ Zn(G ) ≤ · · ·

with Z0(G ) = {1} and Zn(G ) =
{g ∈ G : [g , g1, g2, . . . , gn] = 1, for all g1, g2, . . . , gn ∈ G}. We
call Zn(G ) the n-th-centre of G and, where no ambiguity arises,
denote it Zn.
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Theorem

(a) If u ≥ 0 and m is odd, then Zu(Dm) = {1} ,

(b) If u ≥ 0 and m is even with m = 2ℓn (n > 0 and n odd), then

(i) if n > 1, then

Zu(Dm) =

{ {

aN : N = (2ℓ−un)x and 0 ≤ x < 2u
}

, u < ℓ
{

anx : 0 ≤ x < 2ℓ
}

, u ≥ ℓ

(ii) if n = 1, then

Zu(Dm) =

{ {

aN : N = 2ℓ−ux and 0 ≤ x < 2u
}

, u < ℓ

Dm, u ≥ ℓ
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Theorem

If u > 0 and Zu(Dm) ≤ 〈a〉, then

(i)
∣

∣

∣
C((−2)u , (−2)u−1)

∣

∣

∣
=

m

|Zu(Dm)|
,

(ii)
∣

∣C(2u , 2u−1)
∣

∣ =
m

|Zu(Dm)|
.

Lemma

|C(0, 1)| =
m

|Z1|
.
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The Main Theorem

Theorem

If m = 2ℓn > 3 with n odd,

(i)

|P(Dm)| = m

(

1

|Z1|
+

t−1
∑

i=1

1

|Zi |

)

where t =







1 + ordm(−2) for ℓ = 0, n > 1
ℓ+ perm(−2) for ℓ > 0, n > 1

ℓ for ℓ > 0, n = 1

(ii)

|Λ(Dm)| = m

(

1

|Z1|
+

t′−1
∑

i=1

1

|Zi |

)

where t ′ =







1 + ordm(2) for ℓ = 0, n > 1
ℓ+ perm(2) for ℓ > 0, n > 1

ℓ for ℓ > 0, n = 1
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