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higher-dimensional algebra:
Ronald Brown: 2-dimensional group theory
Kock: Double (inverse) semigroups (2007)
Edmunds: Double magma (2013) and interchange rings (2014)
Bremner and Madariaga : double semigroups (2014)
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Double inverse semigroups: Element-based definition

Definition (Kock, 2007)
A double inverse semigroup (S ,},�) is a set S such that (S ,})
and (S ,�) are inverse semigroups and } and � satisfy the
middle-four interchange law:

(a� b)} (c � d) = (a} c)� (b } d)

Eckmann-Hilton-like result:

Theorem
Double inverse semigroups are improper [DeWolf and Pronk] and

commutative [Kock].
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Double inverse semigroups: Brown-style definition

Ronald Brown: double groups are single object double groupoids

Definition
A double inverse semigroup is a single object double "inverse
semigroupoid".

"inverse semigroupoid" is the multiobject version of inverse
semigroup
What are these and what do we know about them?
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First question: what is an "inverse semigroupoid"?
At each object, we want an inverse semigroup:

pseudoinverses (xyx = x and yxy = y)
commuting idempotents

What satisfies this need:

inverse restriction categories
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Inverse Restriction Categories

Definition (Cockett and Lack, 2002)

A restriction structure on a category X is an assignment of an
arrow f

A

: A ! A to each arrow f : A ! B in X satisfying the
following four conditions:

(R.1) f f

A

= f for all f

(R.2) f

A

g

A

= g

A

f

A

for all dom(f ) = dom(g)

(R.3) g

A

f

A

= g

A

f

A

for all dom(f ) = dom(g)

(R.4) g

A

f = f (gf )
B

for all cod(f ) = dom(g)

A category equipped with a restriction structure is called a
restriction category.
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Inverse Restriction Categories

Definition

A restriction category X is called an inverse restriction category,
whenever every map f is a restricted isomorphism. That is, each
map f has a corresponding map f

� such that f �f = f and ↵

� = f

�.

properties:
existence of pseudoinverses
idempotents are exactly the restriction idempotents and
commute

i.e., these work exactly as desired.
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Question: What results in inverse semigroup theory can be
extended to inverse restriction categories?
Example: Vagner-Preston works (Cockett and Lack, 2002, Thm
3.8)

Theorem (Ehresmann-Schein-Nambooripad)
The category of inductive groupoids is equivalent to the category of

inverse semigroups.

Does this translate to the category of inverse restriction categories,
IRCat?
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Definition

A groupoid (G , �) is said to be an ordered groupoid whenever there
is a partial order  on its arrows satisfying the following conditions:

(i) For all arrows f , g 2 G , f  g implies f

�1  g

�1.

(ii) For all arrows a,A, b,B 2 G such that if a  A, b  B and
the composites ab and AB exist, then ab  AB .

(iii) For all arrows f : A0 ! B in G and objects A  A

0 in G , there
exists a unique restriction of f to A [f |⇤A] such that
dom[f |⇤A] = A and [f |⇤A]  f .
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Definition
An ordered groupoid is said to be

an inductive groupoid whenever its objects form a
meet-semilattice,
a locally inductive groupoid whenever there is a partition
{M

i

}
i2I of G0 into meet-semilattices M

i

.

A locally inductive groupoid is said to be top-heavy whenever each
meet-semilattice M

i

admits a top-element >
i

.
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Notation
Let A be an object of a restriction category X. Let E

A

denote the

set of restrictions of all endomorphisms on A. That is,

E

A

=
�
f

A

: A ! A|f : A ! A 2 X1
 
.

Proposition

For each object A of a restriction category X, E
A

is a

meet-semilattice with meets given by a ^ b = ab. In addition, E

A

has top element 1
A

.
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Remark
A restriction category is naturally partially equipped with the partial
order

f  g if and only if gf = f
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Construction

Given an inverse restriction category X, define a groupoid G(X) :

Objects: G(X)0 =
a

A2X0

E

A

.

Arrows: f : A ! B in X corresponds to f : f ! f

� in G(X).
Composition: composition in X
Inverses: from restricted isomorphisms in X.
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G(X) is a top-heavy locally inductive groupoid:
E

A

meet semilattice with top 1
A

partial order from X – satisfies conditions (i) and (ii)
restriction : [f |⇤e] = f � e
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Any two maps f and g in an ordered groupoid with domf ^ codg

existing, there is a tensor product:

f ⌦ g = [f |⇤ dom(f ) ^ cod(g)] • [dom(f ) ^ cod(g) ⇤| g ]

Composition in X is exactly ⌦ in GX.
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Construction

Given a top-heavy locally inductive groupoid (G, •,, {M
i

}
i2I ) ,

define an inverse restriction category
⇣
I(G), �, (�)

⌘
:

Objects: The objects are the meet-semilattices M

i

.

Arrows:

I(G)(M1,M2) = {f : A1 ! A2 in G |A1 2 M1, A2 2 M2}

Composition given by ⌦
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Identities: Identities on the tops : 1
M

= 1>
M
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I(G) is an inverse restriction category:
Restrictions: Given an arrow f : M1 ! M2 corresponding to an
arrow f : A1 ! A2 in G, define

f = 1
A

1

: A1 ! A1

Partial Inverses: For each arrow f : M1 ! M2, define

(f � : M2 ! M1) = (f �1 : A2 ! A1)
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Theorem

The functors G and I form an equivalence

IRCat

G
//
TLIGrpd

I
oo
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To do:

Define: double inverse semigroup is a single-object double inverse
restriction category.

Q: What are double restriction categories and how should their
restriction structures interact?
A: Unfortunately, no definition yet, but an example.
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First, need restricted pullbacks in restriction category X :
Given any cospan A

//
C B

oo , a restricted pullback is cone
consisting of an object P and total arrows p

A,B,C : P ! A/B/C
satisfying the following universal property:
For each lax cone (P 0, p0

A

, p0
B

, p0
C

) over A

//
B C

oo , there
is a unique ' : P 0 ! P such that ' � p  p

0 and ' = p

0
A

p

0
B

p

0
C



P

0

p

0
A

��

p

0
C

✏✏

A

//
C

P

0

p

0
A

��

'
✏✏ p

0
B

⇣⇣

�
P

p

A

~~
p

B

  



A

//
C B

oo
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Let X be a restriction category. A collection M of monics in X is
stable under restricted pullbacks whenever:

M contains all isomorphisms of M,

M is closed under composition,
for each m : B ! C in M and f : A ! C in X, the restricted
pullback

A⌦
C

B

p

2

//
✏✏

p

1

✏✏

B✏✏

m

✏✏

A

f

//
C

of m along f exists and p1 2 M.
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Define a restriction category Par(X,M) (Cockett and Lack, 2002)
with the following data:

Objects: Same objects as X

Arrows: Isomorphism classes of spans

X D

ooioo f //
Y ,

with i 2 M.
Composition: restricted pullback

Restriction: (i , f ) = (i , i)
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Double Category Par(X,M)

Objects: Same as X

Vertical arrows: The total arrows of X

total maps form a subcategory so composition is clear

Horizontal arrows: the arrows of Par(X,M)
composition restricted pullbacks

Double cells:
X

�•u
✏✏

D

↵
✏✏

ooioo f //
Y

•v
✏✏

X

0
D

0oo
i

0
oo

f

0
//
Y

0
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Double Cell Composition

Vertical Composition : compose all arrows vertically –
straightforward

Horizontal Composition: given by universal property of restricted
pullback

X

�•u
✏✏

S



ooioo f //

↵
✏✏

Y

�•v
✏✏

T



oodoo x //

�
✏✏

Z

•w
✏✏

X

0
S

0oo
j

oo
g

//
Y

0
T

0oo
c

oo
y

//
Z

0
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First take the restricted pulbacks:

S ⌦
Y

T

a

zz

b

✏✏

c

$$
X

�•u
✏✏

S



ooioo f //

↵
✏✏

Y

�•v
✏✏

T



oo
j

oo
g

//

�
✏✏

Z

•w
✏✏

X

0
S

0oo
i

0
oo

f

0
//
Y

0
T

0oo
j

0
oo

g

0
//
Z

0

S

0 ⌦
Y

0
T

0
a

0

dd

b

0

OO

c

0

::
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This gives a lax cone

S ⌦
Y

T

↵a

{{

�c

$$

vb

✏✏

S

0

f

0
$$


T

0�

j

0
zz

Y

0

over
S

0 f

0
//
Y

0
T

0j

0
oo
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So there is a unique a unique ' : S ⌦
Y

T ! S

0 ⌦
Y

0
T

0 giving the
double cell

X

�•u
✏✏

S ⌦
Y

T



ooiaoo
gc

//

'
✏✏

Z

•w
✏✏

X

0
S

0 ⌦
Y

0
T

0oo

i

0
a

0
oo

g

0
c

0
//
Z

0
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Vertical Restriction

For each such ↵, define the vertical restriction e↵ of ↵ to be

e↵ =

X

�u=1
X

D

↵
✏✏

ooioo f //
Y

1
Y

=v

X D

oo
i

oo

f

//
Y
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Horizontal Restriction

For each such ↵, define the horizontal restriction ↵ of ↵ to be

↵ =

X

�•u
✏✏

D

↵
✏✏

ooioo // i //
X

•u
✏✏

X

0
D

0oo
j

oo //
j

//
X

0
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It is quickly seen that the restriction structures commute:

X

�•u
✏✏

D

↵
✏✏

ooioo f //
Y

•v
✏✏

X

0
D

0oo
i

0
oo

f

0
//
Y

0

g(�)�!
X

�

D

↵
✏✏

ooioo f //
Y

X D

oo
i

oo

f

//
Y

(�)�!
X

�

D

↵
✏✏

ooioo // i //
X

X D

oo
i

oo //
i

//
X

X

�•u
✏✏

D

↵
✏✏

ooioo f //
Y

•v
✏✏

X

0
D

0oo
i

0
oo

f

0
//
Y

0

(�)�!

X

�•u
✏✏

D

↵
✏✏

ooioo // i //
X

•u
✏✏

X

0
D

0oo
j

oo //
j

//
X

0

g(�)�!
X

�

D

↵
✏✏

ooioo // i //
X

X D

oo
i

oo //
i

//
X
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Thank you!
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