Inverse Restriction Categories and Their Groupoids

Darien DeWolf Dalhousie University

FMCS at Colgate June 6, 2015

Darien DeWolf Dalhousie University Inverse Restriction Categories and Their Groupoids

higher-dimensional algebra:

- Ronald Brown: 2-dimensional group theory
- Kock: Double (inverse) semigroups (2007)
- Edmunds: Double magma (2013) and interchange rings (2014)
- Bremner and Madariaga : double semigroups (2014)

Definition (Kock, 2007)

A double inverse semigroup (S, \odot, \odot) is a set S such that (S, \odot) and (S, \odot) are inverse semigroups and \odot and \odot satisfy the middle-four interchange law:

$$(a \odot b) \odot (c \odot d) = (a \odot c) \odot (b \odot d)$$

Eckmann-Hilton-like result:

Theorem

Double inverse semigroups are improper [DeWolf and Pronk] and commutative [Kock].

Double inverse semigroups: Brown-style definition

Ronald Brown: double groups are single object double groupoids

Definition

A *double inverse semigroup* is a single object double "inverse semigroupoid".

"inverse semigroupoid" is the multiobject version of inverse semigroup What are these and what do we know about them? First question: what is an "inverse semigroupoid"? At each object, we want an inverse semigroup:

- pseudoinverses (xyx = x and yxy = y)
- commuting idempotents

What satisfies this need:

inverse restriction categories

Definition (Cockett and Lack, 2002)

A restriction structure on a category **X** is an assignment of an arrow $\overline{f_A} : A \to A$ to each arrow $f : A \to B$ in **X** satisfying the following four conditions:

(R.1)
$$f \overline{f_A} = f$$
 for all f
(R.2) $\overline{f_A} \overline{g_A} = \overline{g_A} \overline{f_A}$ for all dom $(f) = \text{dom}(g)$
(R.3) $\overline{g_A} \overline{f_A} = \overline{g_A} \overline{f_A}$ for all dom $(f) = \text{dom}(g)$
(R.4) $\overline{g_A} f = f \overline{(gf)_B}$ for all cod $(f) = \text{dom}(g)$
A category equipped with a restriction structure is called a restriction category.

Definition

A restriction category X is called an *inverse restriction category*, whenever every map f is a restricted isomorphism. That is, each map f has a corresponding map f° such that $f^{\circ}f = \overline{f}$ and $ff^{\circ} = \overline{f^{\circ}}$.

properties:

- existence of pseudoinverses
- idempotents are exactly the restriction idempotents and commute
- i.e., these work exactly as desired.

Question: What results in inverse semigroup theory can be extended to inverse restriction categories? Example: Vagner-Preston works (Cockett and Lack, 2002, Thm 3.8)

Theorem (Ehresmann-Schein-Nambooripad)

The category of inductive groupoids is equivalent to the category of inverse semigroups.

Does this translate to the category of inverse restriction categories, **IRCat**?

Definition

A groupoid (G, \circ) is said to be an *ordered groupoid* whenever there is a partial order \leq on its arrows satisfying the following conditions:

- (i) For all arrows $f, g \in G, f \leq g$ implies $f^{-1} \leq g^{-1}$.
- (ii) For all arrows $a, A, b, B \in G$ such that if $a \leq A, b \leq B$ and the composites ab and AB exist, then $ab \leq AB$.
- (iii) For all arrows $f : A' \to B$ in G and objects $A \le A'$ in G, there exists a unique restriction of f to A $[f|_*A]$ such that $\operatorname{dom}[f|_*A] = A$ and $[f|_*A] \le f$.

Definition

An ordered groupoid is said to be

- an *inductive groupoid* whenever its objects form a meet-semilattice,
- a *locally inductive groupoid* whenever there is a partition $\{M_i\}_{i \in I}$ of \mathbf{G}_0 into meet-semilattices M_i .

A locally inductive groupoid is said to be *top-heavy* whenever each meet-semilattice M_i admits a top-element \top_i .

Notation

Let A be an object of a restriction category X. Let E_A denote the set of restrictions of all endomorphisms on A. That is,

$$E_A = \left\{\overline{f_A} : A \to A | f : A \to A \in \mathbf{X}_1 \right\}.$$

Proposition

For each object A of a restriction category X, E_A is a meet-semilattice with meets given by $\overline{a} \wedge \overline{b} = \overline{a}\overline{b}$. In addition, E_A has top element 1_A .

Remark

A restriction category is naturally partially equipped with the partial order

$$f \leq g$$
 if and only if $g\overline{f} = f$

Construction

Given an inverse restriction category X, define a groupoid $\mathcal{G}(X)$:

• Objects:
$$\mathcal{G}(\mathbf{X})_0 = \prod_{A \in \mathbf{X}_0} E_A$$
.

• Arrows: $f : A \to B$ in **X** corresponds to $f : \overline{f} \to \overline{f^{\circ}}$ in $\mathcal{G}(\mathbf{X})$.

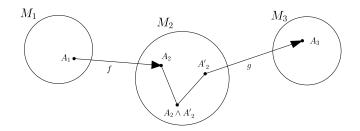
- Composition: composition in X
- Inverses: from restricted isomorphisms in X.

 $\mathcal{G}(\mathsf{X})$ is a top-heavy locally inductive groupoid:

- E_A meet semilattice with top 1_A
- partial order from X satisfies conditions (i) and (ii)
- restriction : $[f|_*\overline{e}] = f \circ \overline{e}$

Any two maps f and g in an ordered groupoid with $dom f \wedge codg$ existing, there is a tensor product:

$$f\otimes g = [f|_* \operatorname{dom}(f) \wedge \operatorname{cod}(g)] \bullet [\operatorname{dom}(f) \wedge \operatorname{cod}(g)_*|g]$$



Composition in **X** is exactly \otimes in \mathcal{G} **X**.

Construction

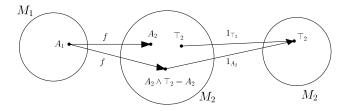
Given a top-heavy locally inductive groupoid $(\mathbf{G}, \bullet, \leq, \{M_i\}_{i \in I})$, define an inverse restriction category $(\mathcal{I}(\mathbf{G}), \circ, \overline{(-)})$:

- Objects: The objects are the meet-semilattices M_i.
- Arrows:

$$\mathcal{I}(\mathbf{G})(M_1, M_2) = \{ f : A_1 \to A_2 \text{ in } \mathbf{G} \, | \, A_1 \in M_1, \, A_2 \in M_2 \}$$

• Composition given by \otimes

Identities: Identities on the tops : $1_M = 1_{\top_M}$



 $\mathcal{I}(G)$ is an inverse restriction category:

Restrictions: Given an arrow *f* : *M*₁ → *M*₂ corresponding to an arrow *f* : *A*₁ → *A*₂ in **G**, define

$$f = 1_{A_1} : A_1 \rightarrow A_1$$

• Partial Inverses: For each arrow $f: M_1 \rightarrow M_2$, define

$$(f^\circ:M_2\to M_1)=(f^{-1}:A_2\to A_1)$$

Theorem

The functors ${\mathcal G}$ and ${\mathcal I}$ form an equivalence

$$\mathsf{IRCat} \underset{\mathcal{I}}{\overset{\mathcal{G}}{\longleftarrow}} \mathsf{TLIGrpd}$$

To do:

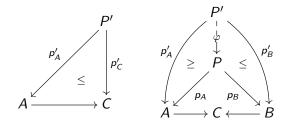
Define: double inverse semigroup is a single-object double inverse restriction category.

Q: What are double restriction categories and how should their restriction structures interact?

A: Unfortunately, no definition yet, but an example.

First, need restricted pullbacks in restriction category **X** : Given any cospan $A \longrightarrow C \longleftarrow B$, a restricted pullback is cone consisting of an object P and total arrows $p_{A,B,C} : P \rightarrow A/B/C$ satisfying the following universal property: For each lax cone (P', p'_A, p'_B, p'_C) over $A \longrightarrow B \longleftarrow C$, there

is a unique $\varphi: P' \to P$ such that $\varphi \circ p \leq p'$ and $\overline{\varphi} = \overline{p'_A} \overline{p'_B} \overline{p'_C}$



Let **X** be a restriction category. A collection \mathcal{M} of monics in **X** is *stable under restricted pullbacks* whenever:

- \mathcal{M} contains all isomorphisms of \mathcal{M} ,
- \mathcal{M} is closed under composition,
- for each $m: B \to C$ in \mathcal{M} and $f: A \to C$ in \mathbf{X} , the restricted pullback

$$\begin{array}{c} A \otimes_{C} B \xrightarrow{p_{2}} B \\ \downarrow \\ p_{1} \\ \downarrow \\ A \xrightarrow{f} C \end{array} \xrightarrow{f} C$$

of *m* along *f* exists and $p_1 \in \mathcal{M}$.

Define a restriction category Par(X, M) (Cockett and Lack, 2002) with the following data:

- Objects: Same objects as X
- Arrows: Isomorphism classes of spans

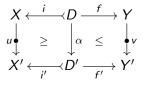
$$X \xleftarrow{i} D \xrightarrow{f} Y$$
,

with $i \in \mathcal{M}$.

- Composition: restricted pullback
- Restriction: $\overline{(i, f)} = (i, i)$

Double Category $\mathbb{P}ar(\mathbf{X}, \mathcal{M})$

- Objects: Same as X
- Vertical arrows: The total arrows of X
 - total maps form a subcategory so composition is clear
- Horizontal arrows: the arrows of $\operatorname{Par}(\mathsf{X},\mathcal{M})$
 - composition restricted pullbacks
- Double cells:



Vertical Composition : compose all arrows vertically – straightforward

Horizontal Composition: given by universal property of restricted pullback

$$X \xleftarrow{i} S \xrightarrow{f} Y \xleftarrow{d} T \xrightarrow{x} Z$$

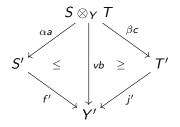
$$u \oint \ge \int \alpha \leq \oint v \geq \int \beta \leq \oint w$$

$$X' \xleftarrow{j} S' \xrightarrow{g} Y' \xleftarrow{c} T' \xrightarrow{y} Z'$$

First take the restricted pulbacks:



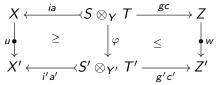
This gives a lax cone



over

$$S' \xrightarrow{f'} Y' \xleftarrow{j'} T'$$

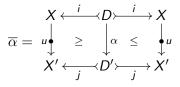
So there is a unique a unique $\varphi: S \otimes_Y T \to S' \otimes_{Y'} T'$ giving the double cell



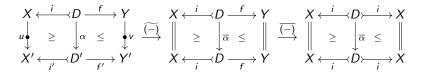
For each such $\alpha,$ define the vertical restriction $\widetilde{\alpha}$ of α to be

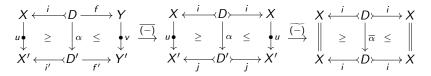
$$\widetilde{\alpha} = \overline{u} = \mathbf{1}_{X} \| \stackrel{i}{\geq} \bigcup_{i} \overline{\alpha} \stackrel{f}{\leq} \| \mathbf{1}_{Y} = \overline{v}$$
$$X \xleftarrow{i}{\leftarrow} D \xrightarrow{f} Y$$

For each such α , define the horizontal restriction $\overline{\alpha}$ of α to be



It is quickly seen that the restriction structures commute:





Thank you!