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Abstract

The Ehresmann-Schein-Nampooripad (ESN) Theorem asserts an equivalence between the category
of inverse semigroups and the category of inductive groupoids. In this paper, we consider the category
of inverse categories and functors — a natural generalization of inverse semigroups — and extend the
ESN theorem to an equivalence between this category and the category of top-heavy locally inductive
groupoids and locally inductive functors. From the proof of this extension, we also generalize the ESN
Theorem to an equivalence between the category of inverse semicategories and the category of locally
inductive groupoids and to an equivalence between the category of inverse categories with oplax functors
and the category of top-heavy locally inductive groupoids and ordered functors.
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1 Introduction

The Ehresmann-Schein-Nampooripad (ESN) Theorem asserts the existence of an equivalence between the
category of inverse semigroups (with semigroup homomorphisms) and the category of inductive groupoids
(with inductive functors). A groupoid is called ordered in this context if there is a compatible (functorial)
order on both objects and arrows with a notion of restriction on the arrows such that an arrow f: A — B
has a unique restriction f': A’ — B’ with f' < f for any object A" < A. For the precise definition see,
Definition 1.1. Ordered functors between these are functors that preserve the order. Furthermore, an
ordered groupoid is called inductive when the objects form a meet-semilattice and an ordered functor is
inductive when it preserves the meets. The correspondence of the ESN Theorem is directly extendable
to inverse semigroups and prehomomorphisms when one takes ordered functors, rather than inductive
functors, between the inductive groupoids.

This theorem has been extended to various larger classes of semigroups such as regular semigroups
[7, 8, 9], two-sided restriction semigroups (also called Ehresmann semigroups) [4] and more general
restriction groups [3] with either semigroup homomorphisms or A- or V-prehomomorphisms. The main
ideas in this context have focused on either changing the requirement for a meet-semilattice structure
to a different order structure on the objects of the groupoid, or on generalizing to inductive categories
rather than groupoids.

Our approach here is to generalize this equivalence in a different direction. Semigroups can be viewed
as single-object semicategories and we want to obtain a ‘multi-object’ version of the correspondence.
As groupoids can be thought of as the multi-object version of groups, we think of inverse categories as
a multi-object version of inverse semigroups. In this paper, we prove a new generalization of the ESN
theorem which extends the result to inverse categories. Since we are generalizing the concept of inverse
semigroup, we will remain within the category of groupoids. They will still be ordered, but the order
structure will only be locally inductive in a suitable sense: the objects need to form a disjoint union of
meet-semilattices. Since inverse categories have units, we further require that the meet-semilattices have
a top-element. If we instead generalize to inverse semicategories, this requirement is not needed. Locally
inductive functors, ordered functors that preserve all meets that exist, will correspond to functors of
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inverse semicategories (Corollary 2.16). We will also show that the category of inverse categories and
oplax functors is equivalent to the category of top-heavy locally inductive groupoids and locally inductive
functors, generalizing the classical result that the category of inverse semigroups and prehomomorphisms
is equivalent to the category of inductive groupoids and ordered functors (Theorem 2.19).

The groupoid we construct for an inverse category was independently considered in the work of
Linckelmann [6] on category algebras. Linckelmann observes that this groupoid has the same category
algebra as the original inverse category, giving the category algebra of an inverse category the structure
of a groupoid algebra: a groupoid algebra over a commutative ring is a direct product of matrix rings. In
this paper, we introduce this groupoid with an ordered structure and observe the important characterizing
properties of the order structure to obtain an equivalence of categories between the category of inverse
categories and the category of these top-heavy locally inductive groupoids.

From the semigroup perspective, this begs the question of whether there are appropriate multi-object
versions of the other classes of semigroups mentioned above which then may be shown to be equivalent
to appropriate versions of locally inductive categories.

1.1 Inductive Groupoids and Inverse Semigroups

Inductive groupoids are a class of groupoids whose arrows are equipped with a partial order satisfying
certain conditions and whose objects form a meet-semilattice. Charles Ehresmann used ordered groupoids
to model pseudogroups while inverse semigroups, introduced by Gordon Preston [10], were concurrently
used as an alternate model for pseudogroups. Ehresmann was certainly aware of the connection between
ordered (inductive) groupoids and inverse semigroups, as it was Ehresmann who first introduced the
tensor product required to make the correspondence work. Boris Schein [11] made this connection
explicit, requiring that the set of objects form a meet-semilattice, thus guaranteeing the existence of this
tensor product for all arrows of the groupoid. K.S.S. Nambooripad [7, 8, 9] independently developed
the theory of so-called regular systems and their correspondence to so-called regular groupoids. This
theory is, in fact, more general and specializes to the correspondence of inverse semigroups to inductive
groupoids. A more detailed history of inverse semigroups, inductive groupoids and their applications
can be found in Hollings’ [2]. In this section, we present the modern exposition of this correspondence,
which can be found in Mark Lawson’s book [5], where these constructions and their equivalence were
first explicitly given.

Definition 1.1. A groupoid (G, o) is said to be an ordered groupoid whenever there is a partial order <
on its arrows satisfying the following four conditions:

(i) For each arrow f,g € G, f < g implies f~* < g%
(ii) For each arrow a, A,b, B € G such that a < A, b < B and the composites ab and AB exist, then
ab < AB.

(iii) For each arrow f: A' — B in G and objects A < A’ in G, there exists a unique restriction of f to
A, denoted [f|+A], such that dom[f|.A] = A and [f|.A] < f.

(iv) For each arrow f: A — B’ in G and objects B < B’ in G, there exists a unique corestriction of f
to B, denoted [B .|f], such that cod[B «|f] = B and [B«|f] < f.

An ordered groupoid is said to be an inductive groupoid whenever its objects form a meet-semilattice.

Though it is sometimes convenient to explicitly give both the restrictions and corestrictions in an

ordered groupoid, the following proposition makes it necessary only to include one of them in any proofs.

Proposition 1.2 ([5]). In Definition 1.1, conditions (i) and (iv) are equivalent.

Definition 1.3. Let G be an ordered groupoid with arrows a, 8 € G. If dom(«) A cod(B) exists, the

tensor product a ® 3 of a and B is defined as

a® B = |a|«dom(a) A cod(B)][dom(a) A cod(B) «| A].

Proposition 1.4 ([5]). This tensor product is associative whenever it exists. In addition, this tensor
product admits pseudoinverses given by the inverses in the ordered groupoid, making (G1,®) an inverse
semagroup. O

Proposition 1.5. For all objects A < B of an ordered groupoid, [1p |« A] =14 = [A]« 1B].

Proof. Since the partial order on arrows induces the partial order on the objects of an ordered groupoid
and the objects of a category are identified by the identity arrow on that object, we have that 14 < 1p.
Since the (co)domain of 14 is A, we have [15 |« A] = 14 = [A |« 18] by the uniqueness of (co)restrictions

O



Definition 1.6. A morphism F : G — H of ordered groupoids (an ordered functor) is a functor such
that, for all arrows f < g in G, F(f) < F(g) in H. An ordered functor between inductive groupoids is
said to be inductive whenever it preserves the meet structure on objects.

Notation. We denote the category of ordered groupoids and ordered functors by OGrpd and the
category of inductive groupoids and inductive functors by IGrpd.

We will now briefly review Lawson’s description of functorial constructions that form the equivalence
of categories between the category of inverse semigroups and the category of inductive groupoids. We
remind the reader that full details can be found in [5].

Construction 1.7 (Inverse Semigroups to Inductive Groupoids). Given an inverse semigroup (S, e),
define an inductive groupoid G(S) with the following data:

e Objects: G(S)o = E(S), the idempotents in S. Since S is an inverse semigroup, E(S) is a meet-
semilattice with meets given by the product in S.

e Arrows: For each element s € S, there is an arrow s : s*s — ss®. Composition is given by
multiplication in S and identities are the elements of E(S).

1

e Inverses: For each arrow s : s*s — ss® in G(5), define s~ = s°, its pseudoinverse in S.

e The partial order on arrows is given by the natural partial order (s < t if and only if s = te for some
idempotent €) on the elements of S. It can be checked that this partial order satisfies conditions (i)
and (ii) of an ordered groupoid.

e The (co)restrictions are also given by multiplication in S. This can be checked to satisfy condition
(iii) of an ordered groupoid.
Construction 1.8 (Inductive Groupoids to Inverse Semigroups). Given an inductive groupoid (G, o, <),
define an inverse semigroup S(G) whose elements are the arrows of G and whose multiplication is given
by the tensor product. This is an inverse semigroup operation with inverses those from G (Proposition
1.4).

Theorem 1.9 (ESN, [5]). The constructions G and S are functorial and form an equivalence of categories
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1.2 Inverse Categories

As groupoids are for groups, we seek a structure describing multi-object inverse semigroups. Inverse
semigroups with units are exactly single-object inverse categories, so it seems that inverse (semi)categories
could be appropriate for such a role.

Definition 1.10. A category X is said to be an inverse category whenever, for each arrow f: A — B
in X, there exists a unique f°: B — A in X such that fo f°o f = fand f°o fo f° = f°.

Motivated, perhaps, by Ehresmann’s use of inductive groupoids to model pseudogroups, we may gain
some intuition about (finite) inverse semigroups by thinking of partial automorphisms on a set. Cockett
and Lack [1] introduced the notion of a restriction category to give an axiomatic treatment to partiality
of maps in a category.

Definition 1.11. A restriction structure on a category X is an assignment of an arrow fa : A — A to
each arrow f: A — B in X satisfying the following four conditions:

(R.1) For all maps f, f fa = f.

(R.2) Forallmaps f: A— Bandg: A— B, fAga =ga fa.

(R.3) For all maps f: A— Bandg: A — B, ﬁzgjfj.

(R.4) For allmaps f: B— Aandg: A— B, gaf=f(9f)B.

A category equipped with a restriction structure is called a restriction category.

Restriction categories reduce deduction about the partiality of a map to algebraic manipulation.
Intuitively, we may think of fa4 as the “domain of definedness” (or, the subobject of A on which f is
defined) for a morphism f in X.



Notation. We may write f instead of fa if the explicit statement of domain adds no useful information.
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Figure 1: The axioms of a restriction category, diagrammatically.

Example 1.12. Examples of restriction categories:

(a)

This is the prototypical example of a restriction category. Let Par denote the category of sets and
partial functions. Par is a restriction category by defining, for each partial function f : A — B,
and each x € A,

f(x) is defined

— T
flz) = { not defined otherwise

The axioms (R.1) — (R.4) required for Par to be a restriction category are easily verified. We can
think of f as the “domain of definedness” of f and can interpret expressions such as fg as “f
restricted to where g is defined”.

Let C be an ordinary category equipped with a stable sytem M of monics (all details of this example
can be found in [1]). Define a category Par(C, M) with the following data:

e Objects: Same objects as C.
e Arrows: Isomorphism classes of spans
X<t p_T Y,

where i € M. We will sometimes denote such an arrow (actually, its isomorphism class) as
(i, f)-

e Composition: Composition is given by pullback.

e Restrictions: Given any arrow (i, f), the assignment (i, f) = (i,¢) defines a restriction structure

on Par(C, M).

The next lemma, lists some useful identities that will be used, without reference, to make calculations

about restriction categories.
Lemma 1.13 ([1]).
(i) f is idempotent;

(ii) fof =gf;
(iii) G = gf;
(iv) T=TF;

(v) 9f = gF;

(vi) if f is monic, then f = 1;
(vii) fg=f implies f = fg.

If X is a restriction category, then:

O

Note. A restriction category X has a natural, locally partially ordered 2-category structure: for any
two parallel arrows f,g: C — D in X, we define a partial order by f < g if and only if f = gf. Notice
that if f < g, then

9f=9f=9f =71

and thus f < 7.



Proposition 1.14. Suppose that a, A,b and B are arrows in a restriction category X with a < A and
b < B. If the composites ab and AB exist, then ab < AB.

Proof. Suppose that a, A,b and B are arrows in X with a < A, b < B and such that the composites ab
and AB exist. Then
ABab = ABbab = Abab = Aab = ab

and thus ab < AB. O

Definition 1.15. A map f in a restriction category X is called total whenever f = 1.
Lemma 1.16 ([1]). If X is a restriction category, then:
(i) every monomorphism is total;
(i) if f and g are total, then gf is total;
(iii) if gf 1is total, then f is total;
(i) the total maps form a subcategory, denoted Tot(X). O

Definition 1.17. A morphism F': X — Y of restriction categories (a restriction functor) is a functor
such that F (f) = F(f) for each f € X;.

Definition 1.18. A map f in a restriction category X is called a restricted isomorphism whenever there
exists a map g — called a restricted inverse of f — such that gf = f and fg=3.

Following from the commutation of idempotents (Restriction Category Axiom 1.11), we have the
following property of restricted isomorphisms:

Theorem 1.19 (Lemma 2.18(vii), [1]). If f is a restricted isomorphism, then its restricted inverse is
necessarily unique.

Notation. Given a map f in a restriction category X, we denote its restricted inverse (if it exists) by
feo
Definition 1.20. A restriction category X is called an inverse category, whenever every map f is a
restricted isomorphism.
Example 1.21. Some inverse categories:
(a) The category of sets and partial bijections.
(b) Any inverse semigroup with unit is a single-object inverse category.
(¢) Any groupoid is an inverse category with all arrows total.
Lemma 1.22 ([1]). If F: X = Y is a restriction functor, then F preserves
(i) total maps,
(i) restriction idempotents,
(#ii) restricted sections and
(i) restricted isomorphisms.

Note. Any functor between inverse categories is a restriction functor preserving restricted isomorphisms.
This follows from the restriction structure and restricted isomorphisms being defined as specific compos-
ites. We will therefore omit the words “inverse” and “restriction” when speaking of functors between
inverse categories.

As expected, restriction idempotents are their own restricted inverse.

Proposition 1.23. In an inverse category, (?)O = f for all arrows f.

Proof. Since all arrows in an inverse category are restricted isomorphisms,
o _

(f) =N =ru)y=rr=r 0
It is clear that inverse categories, interpreted as restriction categories in Definition 1.20, are exactly
the same as inverse categories interpreted as multi-object inverse semigroups in Definition 1.10; that is
restrictions come for free in an inverse category and are given by f = f°f. In this paper, we choose
to think in terms of restriction categories for two reasons: firstly, the choice of notation in restriction
categories facilitates calculations. Secondly, we prefer to think of (finite) inverse semigroups as collections

of partial automorphisms on a (finite) set whose idempotents are partial identities — inverse categories
in terms of restriction categories explicitly make use of this intuition.

Notation. We denote the category of inverse categories and functors by ICat.



2 Main Result

In this section, we introduce the notion of top-heavy locally inductive groupoids: ordered groupoids
whose objects may be partitioned into meet-semilattices, each of which contain a top element. We will
then give functorial constructions of top-heavy locally inductive groupoids from inverse categories, and
vice versa. These constructions will then be seen to give an equivalence of categories between ICat
and TLIGrpd. The identities of an inverse category are seen to correspond to the tops of the meet-
semilattices in a top-heavy locally inductive groupoid and the equivalence can thus be immediately
generalized to an equivalence between the category of inverse semicategories and semifunctors and the
category of locally inductive groupoids and locally inductive functors. Finally, we end this paper with
a short discussion of a categorical analogue of the classical result in semigroup theory that the category
of inverse semigroups and prehomomorphisms is equivalent to the category of inductive groupoids and
ordered functors. Explicitly, we show that the category of inverse categories and oplax functors is
equivalent to the category of top-heavy locally inductive groupoids and ordered functors.

Definition 2.1. Let A be an object of a restriction category X. Let F4 denote the set of restrictions of
all endomorphisms on A. That is,

Ea={fa: A= Alf: A> AeX]}.

Notice that, for any f : A — B in X, we have f : A — A € Ea, since f = f. The reason for
specifying that the restrictions in £4 come from endomorphisms in X, then serves no use further than
simply reminding us that the equivalence we are trying to establish here is based on the observation that
an inverse category is, at each object, an inverse semigroup (with unit).

Proposition 2.2. For each object A of a restriction category X, Ea is a meet-semilattice with meets
given by a A b = ab. In addition, Fa has top element 14.

Proof. First of all, E4 is a poset with the natural partial order inherited from X. We now show that E4
has finite meets given by a A b =ab :

e First, it is a lower bound:

a

<l ogl

and thus @ A b < @. Similarly, @ A

e This lower bound is unique up to isomorphism (equality): suppose that d is such that d <@, d < b
and a A b < d. Then

d=ad=abd=dab=daAb=aAb.
Finally, since T4 = 14, 14 € E4. Also, given any A, 1af = f and thus f < 14 and 14 is the
top element of F4. O

= [
S
1

Proposition 2.3. For each pair of objects A and B of a restriction category X, if A # B, then
EaNnEp=2.
Proof. If f € EaN Ep, then A = dom (?) = B. O
We may now give the (functorial) constructions giving an equivalence between the category of top-
heavy locally inductive groupoids and inverse categories.

Construction 2.4. Given an inverse category (X,O,m), define a groupoid (G(X), e, <) with the
following data:
e Objects: G(X)o = H Ea.
AeXo
o Arrows: Every arrow in G(X) is of the form f : fa — fg for each arrow f: A — B in X.
— Composition: for arrows f : f— foand g : g — g° with f° = g, we define their composite
ge f:f— g°in G(X) to be their composite in X. This composite is indeed an arrow, for

and




~

— Identities: For any object f : A — A in G(X), define 7= f (which is well-defined since f = f).
The identity then satisfies the appropriate axiom: for each g : § — ¢° with g = f and g° = f°,
we have f°g = g°g =g and gf = gg =g.

— Inverses: Given an arrow f : f — f°, define £~ : fo — f to be f°, the unique restricted
inverse of f from X’s inverse structure. The composites are ff° = f° = lgs and f°f = f = 15
as required.

Definition 2.5. An ordered groupoid is said to be a locally inductive groupoid whenever there is a
partition {M;}icr of Go into meet-semilattices M; with the property that any two comparable objects
be in the same meet-semilattice M;. A locally inductive groupoid is said to be top-heavy whenever each
meet-semilattice M; admits a top-element T,.

Note. The requirement that any two comparable objects of a locally inductive groupoid be in the same
meet-semilattice is corresponding to our intuition that if the meet A A B of two objects A and B exists
in M;, then A and B, both sitting above this meet, should also be elements of M;.

Definition 2.6. An ordered functor between locally inductive groupoids is said to be locally inductive
whenever it preserves all meets that exist. In particular, a locally inductive functor will preserve empty
meets and thus top elements and there is no requirement to define so-called “top-heavy locally inductive
functors”.

Notation. We denote the category of locally inductive groupoids and locally inductive functors by
LIGrpd and the category of top-heavy locally inductive groupoids and locally inductive functors by
TLIGrpd.

Proposition 2.7. For all inverse categories X, G(X) is a top-heavy locally inductive groupoid.

Proof. Recall that the partial order on the objects f in Q(X)js that which is induced by the partial

order on the arrows of X. That is, f < g if and only if f = §f = §f. We now prove that this partial
order gives G(X) the structure of an ordered groupoid:

(i) Suppose that f and g are arrows in G(X) with f < g. That is, we suppose that gf = f (since these
are also arrows in X). Then
F=0h"=79"=79 =7d"99" = 9°9f¢"
=9°9f 19" =9°9F F 9" = 9°9F(9f)° = o°F I
°fo
=g /f
and thus f~! = f° < g°=¢ L.
(ii) This follows directly from Proposition 1.14.

we define the restriction [a«€] of « to € to be

(iii) Given an arrow o : @ — «° with an object € < @,
ce. This is indeed an arrow whose domain is €: ae = e =e.
Also, cae = acie = ae, so that ae < a.
If B < a is any other arrow with dom(3) = €, we have a8 = 8 and 8 = €, so that 8 = o€ and thus
[r]«€] as defined is unique.

(iv) Given an arrow « : @ — a° with an object € < a°, we define the corestriction [€.|a] of a to € to
be ea. This is indeed an arrow whose codomain is € : (ea)° = a°e = a°e =e.

Also, aea = aea = a(ea)’ea = aa’e®ea = e®eaa’a = €a, so that ea < a.
If 8 < « is any other arrow with cod(8) = €, we have 8° < a° (property (i) of ordered groupoids)
and thus a°B° = 8° and 3° =€, so that 8° = a°¢ = (éa)® and thus [€ «|a] as defined is unique.

Given the choice of objects for G(X), it follows immediately from Propositions 2.2 and 2.3 that G(X) is
a top-heavy locally inductive groupoid. O

The composition in G(X) of f and g exists exactly when f = g° and is defined by the composition
in X. The tensor product in G(X) is a natural extension of this composition in the sense that it exists
whenever the meet f Ag° exists. This lemma shows that this extension is also defined by the composition
in X.

Lemma 2.8. If X is an inverse category, then in G(X) the tensor products (when defined) are given by
composition in X :
feg=fg



Proof. Recall that, for any arrow f in X, dom(f) = f and cod(f) = f°. Then

f®g=[fl«dom(f) Acod(g)] [dom(f) A cod(g) | g]
=[fleFAP)[FAGlg)=[fl«F9°] [fo°<lg] =FFfg° Fo°9=ffg°9=Ffg O
Proposition 2.9. Locally inductive functors preserve tensors.

Proof. This follows immediately from the definition of a locally inductive functor and the fact that any
ordered functor preserves restrictions and corestrictions [5, Proposition 4.1.2(1)]. O

Proposition 2.10. For each functor F' : X — Y between inverse categories, there exists a locally
inductive functor G(F) : G(X) — G(Y).

Proof. We claim that F': X — Y induces a locally inductive functor G(F') between the groupoids G(X)
and G(Y). Since F is a functor of inverse categories, we have, for each f in X, that Ff = F(f) is a
restriction idempotent in Y. We can then define, for any object f in G(X), G(F)(f) = Ff and this is a
well-defined object function.

Given an arrow f : f — f° in G(X), we define

GF)() = [F(): F (F) = F (7)) = [F(f) : F() = F(F7)] -

We check that this is indeed an arrow in G(Y). Clearly, F(f) has the correct domain. We check,
then, that it has the correct codomain; that is, we verify that (F(f))° = F(f°). By Lemma 1.22(iv),
(F(f))° =F(f°). It follows, then, that (F(f))° = F(f°) and thus F is well defined on arrows.

Since the objects of G(X) are specific arrows in X and the composition in G(X) is, when defined,
given by composition in X, the functoriality of G(F') follows from the functoriality of F.

We check now that F'is an ordered functor. That is, we must check that F' preserves partial orders.
Suppose that f < g are arrows in G(X). Then gf = f and thus

F(g)F(f) = F(9)F(f) = F(gf) = F(f) = F(f).

Therefore, F(f) < F(g) in G(Y) and F' is an ordered functor.

Finally, we verify that F is a locally inductive functor. If @ A b exists in G(X), then @ and b are
endomorphisms on the same object and are thus composable and in the same meet-semilattice. Then,
by the functoriality of F, F (aAb) = F (ab) = F(a)F (b) = F(a) A F (b). O

Corollary 2.11. Construction 2.4 is the object function of a fully faithful functor G : ICat — TLIGrpd.

Proof. By the proof of Proposition 2.10, G is clearly a faithful functor.

Now, let X and X' be inverse categories and suppose that F : G(X) — G(X’) is a locally inductive
functor. We seek, then, a functor F’ : X — X' with G(F') = F.

For any two restriction idempotents € and f in E4, we have F(€A f) = Fe A Ff since F is locally
inductive. This implies that F'€ and F'f are X’-endomorphisms on the same object and thus F(E4) C Ep
for some object B € X'. So we can define, for each object A € X, F'(A) to be the object in X' satisfying
F(EA) g EF’(A) in Q(X’)

Given any arrow f: A — B in X, we must define an arrow F'(f) : F'(A) — F'(B) in X'. We know
that f corresponds to the arrow f : f — f° in G(X), whose image under F is F(f) : Ff — Ff° in G(X').
Since F'f € F(E4) and Ff° € F(Eg), this F(f) corresponds to an arrow F'(f): F'(A) — F'(B) in X'.

Clearly, identity arrows in X, corresponding to identity arrows in G(X) and mapped to identities in
G(X') under F, will be mapped to identities in X’ under F’. We check that composition is preserved.
Suppose that f and g are arrows whose composite gf exists in X. Both g and f correspond, then,
to arrows g : g — g° and f : f — f°, respectively, in G(X). Notice that the composite gf does not
necessarily exist in G(X), but that, since g, f° € Ep, the tensor ¢ ® f does and that this tensor product
uniquely corresponds to gf by Proposition 2.8. By Proposition 2.9, then, F(g ® f) = F(g9) ® F(f) and,
again by Lemma 2.8 and the definition of F”’, corresponds to F'(g)F'(f). O

Construction 2.12. Given a top-heavy locally inductive groupoid (G, e, <, {M,}icr), define an inverse
category (I (&), o,m) with the following data:

e Objects: The objects are the meet-semilattices M;.



e Arrows: Z(G)(My, M2) = {f : A1 — A> in G| A, € M, Ay € M>}. Note that every object of G is
in some M;, so that every arrow in G will be found in exactly one of these hom-sets since the M;’s
are disjoint.

— Composition: A composable pair of arrows f : My — Mz and g : M2 — M3 in Z(G),
corresponds to a pair of arrows f : Ay — Az and g : A5 — Az in G with A; € My, As, A, € M
and A3z € Ms. Since Ms is a meet-semilattice, the meet A; A A) exists. We can therefore define
the composite of f with gas go f = g® f = [g|+ A2 A A5][A2 A A5 .| f]. This composition is
associative by Proposition 1.4.

— Identities: For each object M, define 1p7, : M1 — M; to be 17, = T1 — T1 in G. Let
f : M1 — M> be an arrow corresponding to f : A1 — Az in G. Note that [11, [« A1AT1] = 14,
by Proposition 1.5. Then

folr,=[fli AiATi]e[AI AT 17 ] =[f| Ar] @ 1la, = f.

Similarly, 1+, o f = f.

— Restrictions: Given an arrow f : My — My corresponding to an arrow f : A1 — Az in G,
define f : My — My by f = 14, : A1 — A;. Conditions (R.1) — (R.4) saying that Z(G) is a
restriction category follow readily from the fact that all restriction idempotents are identities
on some object in G and that restrictions in an ordered groupoid are unique.

— Partial Isomorphisms: For each arrow f : M7 — My, define f° : My — M, as f_1 :As — Aq.
To check that this is a restricted inverse, we check the required composites. First,

foft=fef =flAinA]e[AAdA.lf|=Ffef =1a=FT"
Similarly, f°o f = f.
Proposition 2.13. For each locally inductive functor F : G — H, there exists a functor Z(F) : Z(G) —
Z(H).

Proof. We show that F' induces a functor Z(F) : Z(G) — Z(H).

Given any object in Z(G), a meet-semilattice M, define Z(F)(M1) to be the meet-semilattice Mj
such that F(M;) C Mj. Note that this assignment of M] to M; is unique since the M; are a partition of
Ho.

For any arrow f : M1 — M> in Z(G) corresponding to f : A1 — Az in G, we define Z(F)(f) = F(f) :
F(A1) — F(As), an arrow F(f) : F(M1) — F(M>) in Z(G'). That this assignment is functorial follows
from the functoriality of F. O

Corollary 2.14. Construction 2.12 is the object function of a functor T : TLIGrpd — ICat. O

Proof. Let GG —%-G" bea composable pair of locally inductive functors. Then, on objects of
Z(G) (meet-semilattices forming the partition of Go),
T(GYI(F)(M) = Z(G)(M'), where M’ such that FM C M’
= M", where M" such that M" O G(M') = G(FM) = (GF)M
= Z(GF)(M), by the uniquess of M" D (GF)M.

Equality of the functors Z(GF) and Z(G)Z(F) follows immediately. That Z preserves identity functors
follows from the observation that Z(1g)(M) = M for all objects M in Z(G). O

Theorem 2.15. The functors G and Z form an equivalence of categories,

g
ICat ~ TLIGrpd
T

Proof. By Corollary 2.11, the functor G is fully faithful. We show now that G is essentially surjective by
demonstrating a natural isomorphism GZ 2 1rLiGrpd-

We start with a top-heavy locally inductive groupoid (G, e, <,{M; };cr) and we consider the composite
GI(G). Recall that Z(G) has as objects the meet-semilattices M; and arrows of the form f: M1 — Mo,
where f: A1 — As is an arrow in G with Ay € My and Ay € M. Further recall that every arrow in G
is found exactly once in Z(G). Note that for each object M;,

E]ui = {? : MZ‘ — Mz|f : Mi — MZ} = {1A7|Az c MZ} = Mi.

Then the locally inductive groupoid GZ(G) contains the following data:



e Objects: HEMi = HM’ = Gy.
iel iel
o Arrows: For each f : M1 — M> in Z(G) corresponding to f : A1 — Az in G, there is an arrow
fof—=fo=f:1a, = 1la, 2 f: A — A in GZ(G). Since arrows of G are appearing exactly
once in Z(G), we have, then, that (GZ(G))1 = G1.

— Composition: Given two composable arrows corresponding to f : A1 — Az and g : Ay — As
in GZ(G), we have in Z(G) that go f = g ® f = [g|+ A2 A Az] @ [Aa A Az .| f] = g e f. Their
composite, then, is

gxfinGZ(G)=gofinZ(G)=gefinG.
That is, composition in GZ(QG) is the same as that in G up to isomorphism.
— Restrictions: Given an arrow f: 14, — 1a, & f: A1 — Az and A} < Ay, we have that

(fl+A}) in GI(G) = foly nI(G) = f@ 1, in G
=[fle AL A A @ [A1 A AL |2 14]
= [fl- Al e 1y = [f]. Af).

That is, the restrictions of the two ordered groupoids G and GZG are the same up to isomor-
phism.

This description of GZ(G) is written so that the isomorphism G = GZ(G) follows immediately. O

The definition of the functor G relies on the top-heavy property of a locally inductive groupoid G only
when defining identities on the meet-semilattices partitioning Go. Similarly, the identities of an inverse
category X are essential only as top elements of the meet-semilattices E4. In other words, removing
identities from an inverse category is equivalent to removing top elements from the meet-semilattices
partitioning a locally inductive groupoid. As a result, the equivalence established in Theorem 2.15
generalizes immediately.

Corollary 2.16. The functors G and Z form an equivalence

g
ISCat LIGrpd,
T

where ISCat is the category of inverse semicategories. O

Since single-object inverse categories are precisely inverse semigroups with unit, it is clear that single-
object inverse semicategories are precisely inverse semigroups. With inverse semicategories as multi-
object inverse semigroups, we see that Theorem 1.9 — the equivalence between inductive groupoids and
inverse semigroups — is then a corollary of Corollary of 2.16.

We will end this paper with a short discussion on a generalization of Theorem 2.15.

Recall that prehomomorphisms of inverse semigroups are functions between inverse semigroups sat-
isfying ¢(ab) < ¢(a)é(b). Theorem 1.9 can then be generalized to

Theorem 2.17 ([5], Theorem 8). The category of inverse semigroups and prehomomorphisms is equiv-
alent to the category of inductive groupoids and ordered functors. O

Since the arrows of an inverse category are playing the part of “elements” in each of the “local inverse
semigroups”, a clear candidate for an inverse categorical analogue arises.

Definition 2.18. An oplaz functor F': X — X’ of inverse categories consists of the following data:
e for each object A € X, an object F(A) € X;
e for each arrow f: A — B, an arrow F(f) : F(A) — F(B) such that

— for each composable pair f: A— Band g: B— C in X, F(gf) < F(9)F(f), and
— for each object A € X, F(14) < 1p(a).

Clearly, since composition in G(X) is defined by composition in X, any oplax functor F' : X — X’
between inverse categories induces an ordered functor G(F) : G(X) — G(X').
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Suppose now that F' : G — G’ is an ordered functor between top-heavy locally inductive groupoids.
Recall that composition in Z(G) is defined by the tensor product in G. Then

F(g® f) = F(g |« dom(g) A cod(f))F(dom(g) A cod(f) «| f)
= (Fg/|« F(dom(g) A cod(f)))(F(dom(g) A cod(f)) «| F'f)
< (Fg |« Fdom(g) A Fcod(f))(Fdom(g) A Fcod(f) «| Ff)
=FgoFf
and thus F' induces an oplax functor Z(F) : Z(G) — Z(G'). Specifically, since the identities in Z(G) are

the top elements of G, Z(F) is strict on identities.
The arguments in this paper can then be easily extended to prove the following.

Theorem 2.19. The category of top-heavy locally inductive groupoids and ordered functors is equivalent
to the category of inverse categories and oplax functors. O
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