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6 On Double Inverse Semigroups

Darien DeWolf and Dorette Pronk

Abstract

We show that the two binary operations in double inverse semi-
groups, as considered by Kock [2007], necessarily coincide.

1 Introduction

There has recently been much interest in higher order group-like algebraic
structures. An example of such higher dimensional structures are n-fold
groupoids. The category Grpdn of n-fold groupoids is defined inductively
as follows: the category of 1-fold groupoids is Grpd, the usual category of
(small) groupoids, the category of 2-fold groupoids is the category of double
groupoids (groupoids internal to Grpd) and the category of n-fold groupoids
is the category of groupoids internal to Grpdn−1. n-fold groupoids are im-
portant for homotopy theory because they are conjectured to form an al-
gebraic model for homotopy n-types. Recall that a topological space X is
said to be a homotopy n-type whenever its k-homotopy groups πk(X) are
trivial for all k > n. The homotopy hypothesis conjectures that the category
of homotopy n-types is equivalent to the category of n-fold groupoids (The
single-object case of this is handled by Loday [12] using n-cat-groups). In
[1], Brown introduces two-dimensional group theory, defining a double group
as a single-object 2-fold groupoid.

A more element-based description of a 2-fold groupoid is obtained by
defining a double group (G,⊙,⊚) to be a set equipped with two group
operations that satisfy the middle-four interchange law. That is, for all
a, b, c, d ∈ G, the following holds:

(a⊙ b)⊚ (c⊙ d) = (a⊚ c)⊙ (b⊚ d).

The Eckmann-Hilton argument [4], however, implies that such a structure
exists if and only if both group operations are commutative and coincide.
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The crux of the Eckmann-Hilton argument happens to lie in the monoid
structure of groups (in particular, the existence of identity elements for the
two associative operations); the interchange law implies that both operations
are commutative, share units and, in fact, coincide.

On the other extreme, Edmunds [5] has recently studied what are known
as double magma: sets equipped with two binary operations that satisfy the
interchange law (but do not necessarily have units and are not necessarily
associative). Edmunds explores the structure of such objects and provides
constructions of double magma with two different binary operations.

Kock [9] defines the notion of double semigroup: a set equipped with
two associative binary operations that satisfy the middle-four interchange.
Without units, the Eckmann-Hilton argument does not apply and there ex-
ist double semigroups in which the operations are neither commutative nor
coincide. Following Edmunds’ terminology, we call a double semigroup in
which the two operations do not coincide proper [5]. Otherwise, we call
it improper. A double cancellative semigroup is a double semigroup whose
two operations are both left and right cancellative. Kock uses a tile-sliding
argument to show that double cancellative semigroups are neccesarily com-
mutative. Kock’s argument can be extended to show that double cancellative
semigroups are also improper [3, Proposition 3.2.4]. A semigroup (S,⊙) is
an inverse semigroup whenever, for any element a ∈ S, there is a unique
element a⊙ ∈ S such that a ⊙ a⊙ ⊙ a = a and a⊙ ⊙ a ⊙ a⊙ = a⊙. A dou-
ble inverse semigroup is a double semigroup whose two operations are both
inverse semigroup operations. Kock uses another tile-sliding argument to
show that double inverse semigroups are necessarily commutative. His argu-
ment, however, can not be immediately extended to show that double inverse
semigroups are improper. Therefore, we seek another method to determine
whether or not proper double inverse semigroups exist.

Studying pseudogroups of transformations in differential geometry, Ehres-
mann [6] defined an inductive groupoid as a groupoid with a partial order on
its arrows satisfying conditions on how the partial order behaves with respect
to composition, inverses and (co)restrictions. In Ehresmann’s work, there is
a link between inductive groupoids and inverse semigroups. This is made
more precise by Lawson [10], who provides explicit constructions of an in-
verse semigroup given an inductive groupoid, and vice versa, and shows that
these constructions induce an isomorphism between the category of inverse
semigroups and the category of inductive groupoids, a result known as the
Ehresmann-Schein-Nambooripad Theorem.
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This paper introduces the notion of a double inductive groupoid, a double
groupoid with a partial order on the double cells which shares the properties
of the partial order in an inductive groupoid. We extend the isomorphism
between inverse semigroups and inductive groupoids provided by Lawson to
one between double inverse semigroups and double inductive groupoids.

This isomorphism is used, then, to develop some intuition about the struc-
ture of double inverse semigroups. It follows immediately that the two inverse
semigroup operations must coincide on the shared idempotents, thus collaps-
ing the inductive groupoid structures on the shared idempotents. It is then
shown that double inverse semigroups induce natural single-object double in-
ductive groupoids indexed by the shared idempotents, which are shown to be
groups. It follows, then, that double inductive groupoids (and thus double
inverse semigroups) are presheaves of Abelian groups on meet-semilattices
and, finally, that double inverse semigroups must be improper.

Section 2 of this paper discusses double semigroups and introduces the
problem of finding proper double inverse semigroups. Section 3 discusses
inductive groupoids and constructions relating them to inverse semigroups.
Section 4 introduces double inductive groupoids and the constructions relat-
ing them to double inverse semigroups. Finally, Section 5 establishes that
double inductive groupoids, and thus double inverse semigroups, are exactly
presheaves of Abelian groups on meet-semilattices.

Notation.

• We identify the objects of a category with its identity morphism via
the correspondence a↔ 1a.

• If f : A → B is an arrow in some category, we denote its domain as
fdom = A and its codomain as fcod = B.

• If f and g are arrows in a category with fcod = gdom, we denote their
composite as f ; g, or simply fg.We note the use of postfix notation for
composition and evaluation.

2 Double Semigroups

It is an immediate consequence of the Eckmann-Hilton argument [4] that
if a set is equipped with two group (in fact, monoid) operations satisfying
the middle-four interchange law, then both operations must be commutative
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and must coincide. That is, double groups, when defined in this way, are
essentially Abelian groups. The Eckmann-Hilton argument, however, draws
all of its power from the existence of shared multiplicative units. In this
section, we consider objects in which the operations do not have units. The
following definition was introduced by Kock [9].

Definition 2.1. A double semigroup is an ordered triple (S,⊙,⊚) consisting
of a set S and two associative binary operations ⊙ and ⊚ that satisfy the
following middle-four interchange law: for any a, b, c, d ∈ S,

(a⊙ b)⊚ (c⊙ d) = (a⊚ c)⊙ (b⊚ d).

Using Edmunds’ [5] terminology, we make the following definition:

Definition 2.2. A double semigroup (S,⊙,⊚) is said to be proper whenever
⊙ 6= ⊚. A double semigroup that is not proper is said to be improper.

Definition 2.3. Let (S,⊚,⊙) and (S ′,⊚′,⊙′) be double semigroups. A
double semigroup homomorphism ϕ : S → S ′ is a function ϕ : S → S ′ such
that, for all a, b ∈ S, (a⊙ b)ϕ = aϕ⊙′ bϕ and (a⊚ b)ϕ = aϕ⊚′ bϕ.

Example 2.4.

(i) Given any commutative semigroup (S,⊙), there is an improper double
semigroup (S,⊙,⊙).

(ii) In particular, there is the trivial double semigroup, 1 = ({0},⊙,⊙).

(iii) (Left and right projections) Given any set S, construct a (proper) double
semigroup (S,⊙,⊚) by defining

a⊙ b = a, for all a, b ∈ S and a⊚ b = b, for all a, b ∈ S.

We note that these two semigroups are usually called the left- and right-
zero semigroups on S. The middle-four interchange law is indeed satis-
fied, for

(a⊙ b)⊚ (c⊙ d) = c⊙ d = c and (a⊚ c)⊙ (b⊚ d) = a⊚ c = c.

Recall the following definitions from semigroup theory:
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Definition 2.5. A semigroup (S,⊙) is said to be an inverse semigroup
whenever S possesses the following property: for any a ∈ S, there exists a
unique element a⊙ ∈ S such that a⊙ a⊙ ⊙ a = a and a⊙ = a⊙ a⊙ ⊙ a. Given
an element a ∈ S, the unique element a⊙ ∈ S is called the semigroup inverse
of a.

Example 2.6. A partial automorphism of a set S is an isomorphism
ϕ : U

∼
→ V, where U, V ⊆ S. For a given set S, its collection of partial

isomorphisms forms an inverse semigroup under (generalised) composition.
The relationship between inverse semigroups and partial automorphisms can
be thought of as a generalisation of that between symmetries and groups in the
sense that every inverse semigroup is isomorphic to a subsemigroup of some
symmetric inverse semigroup of partial automorphisms. This is known as the
Wagner-Preston Theorem and we refer the reader to [11] for a development
of this theory.

Definition 2.7. Let (S,⊙) be a semigroup. An element e ∈ S is said to be
idempotent whenever e ⊙ e = e. The set of all idempotents of S is denoted
by E(S,⊙).

The following is a characterisation of inverse semigroups. This is Theorem
3 in Chapter 1 of [10] and will be used in Section 5 to prove our main result.

Theorem 2.1. Let (S,⊙) be a regular semigroup. Then (S,⊙) is an inverse
semigroup if and only if E(S,⊙) is commutative.

Finally, we may define what is meant by a double inverse semigroup:

Definition 2.8. A double semigroup (S,⊙,⊚) is said to be a double inverse
semigroup whenever both (S,⊙) and (S,⊚) are inverse semigroups.

Theorem 2.2 (Kock [9]). Double inverse semigroups are commutative (in
the sense that both of its operations are).

3 Inductive Groupoids

To facilitate some understanding of the structure of double inverse semi-
groups, we first explore the structure of inverse semigroups. Lawson [10]
has given an explicit and comprehensive exposition of Ehresmann, Schein
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and Nampooripad’s characterization of inverse semigroups using inductive
groupoids – groupoids equipped with a property-rich partial order on its
arrows. This section is a review of that work.

Definition 3.1. Let (G, •) be a groupoid and let ≤ be a partial order defined
on the arrows of G. We call (G, •,≤) an ordered groupoid whenever the
following conditions are satisfied (where G1 is the set of arrows in G) :

(i) For all x, y ∈ G1, x ≤ y implies x−1 ≤ y−1.

(ii) For all x, y, u, v ∈ G1, if x ≤ y, u ≤ v and the composites xu and yv
exist in G, then xu ≤ yv.

(iii) Let x ∈ G1 and let e be an object in G such that e ≤ xdom. Then there
is a unique element (e∗|x) ∈ G1, called the restriction of x by e, such
that (e∗|x) ≤ x and (e∗|x)dom = e.

(iv) Let x ∈ G1 and let e be an object in G such that e ≤ xcod. Then there
is a unique element (x|∗e) ∈ G1, called the corestriction of x by e, such
that (x|∗e) ≤ x and (x|∗e)cod = e.

We say that G is an inductive groupoid if the further condition that the
objects of G (or, equivalently by our identification, the identity arrows of G)
form a meet-semilattice is satisfied.

Definition 3.2. A functor F : G → G′ between two inductive groupoids is
called inductive if it preserves both the order and the meet operation on the
set of objects and the order on the set of arrows.

Before we continue, we will point out that property (ii) of inductive
groupoids, in which inverses preserve the order, indicates that inductive
groupoids are not a generalisation of ordered groups. For example, con-
sider the usual order on the integers as an additive group. In the integers, we
have a ≤ b implies −a ≥ −b, thus reversing the direction of the inequality
for inverses. In fact, note that an inductive groupoid with one object has a
trivial partial ordering.

It was mentioned in Section 2 that every inverse semigroup is isomor-
phic to a subsemigroup of a symmetric inverse semigroup of partial isomor-
phisms. This isomorphism and the description of semigroups of partial au-
tomorphisms is the key motivation for the given definition of an inductive
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groupoid. In particular, the requirement that inverses preserve the order
makes sense when we think of partial automorphisms as being ordered by
inclusion of both their domains and images. We will demonstrate this now
by constructing an inductive groupoid from partial automorphisms of a set.

Example 3.3. Consider the set A = {a, b}. Consider the following five
partial automorphisms of A :

• idA : a 7→ a, b 7→ b,

• σ : a 7→ b, b 7→ a,

• ida : a 7→ a,

• f : a 7→ b

• f−1 : b 7→ a and

• idb : b 7→ b.

Each of these automorphisms have inverses, of course, and thus the following,
call it G, is a groupoid:

{a, b}idA
AA

σ
]]

{a}
f

//
ida

..

{b}
f−1
oo

idb

qq

It is easy to check that if a partial order is defined on the arrows by α ≤ β if
and only if αdom ⊆ βdom and αIm ⊆ βIm, then the conditions required for
G being called an inductive groupoid are satisfied:

(i) Inverses preserve the partial order on the arrows. For example, f Im =
{b} ⊆ {a, b} = σIm, so that f ≤ σ. Also, f−1Im = {a} ⊆ {a, b} =
σ−1Im, so that f−1 ≤ σ−1.

(ii) The compositions are well-behaved with respect to the partial order on
the arrows. For example, f ≤ idb and idb ≤ idb, while f ; idb = f ≤
idb = idb; idb.

(iii) We have unique restrictions when needed. Note that the objects of this
groupoid are ordered by inclusion. Then both {a} ≤ σdom = {a, b} and
{b} ≤ σdom. The restrictions of σ to {a} and {b} are ({a}∗|σ) = f

and ({b}∗|σ) = f−1, respectively.
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(iv) Similarly, we have all required corestrictions.

We will now detail Lawson’s two constructions ([10, p.108] and [10, p.112]):
one for constructing inverse semigroups from inductive groupoids, and vice
versa:

Construction 3.1. Given an inductive groupoid (G, •,≤,∧), construct an
inverse semigroup IS(G) = (S,⊙) with S = G1 and, for any a, b ∈ S,

a⊙ b = (a|∗acod ∧ bdom) • (acod ∧ bdom∗|b).

Since, for any a ∈ S = G1, acod and adom are objects in G, this product is
always defined, since G0 is a meet-semilattice with respect to the ∧ operation
used.

Theorem 3.2 ([10]). For any inductive groupoid G, IS (G) as defined in
Construction 3.1 is an inverse semigroup.

Construction 3.3. Given an inverse semigroup (S,⊙) with the natural
partial ordering ≤, define a groupoid, IG(S), with the following data:

– Its objects are the idempotents of S; IG(S)0 = E(S).

– Its arrows are the elements of S. For any s ∈ S, define sdom = s⊙ s⊙ and
scod = s⊙ ⊙ s, where s⊙ is the inverse of s.

• For any a, b ∈ IG(S)1, if acod = bdom, define the composite a •
b = a ⊙ b, the product in S. This composition is well defined (i.e.,
the composite has the proper domain and codomain) and therefore
inherently associative: if a • b is defined, then acod = bdom, or a⊙ ⊙
a = b ⊙ b⊙. Then (a • b)dom = (a ⊙ b)dom = (a ⊙ b) ⊙ (a ⊙ b)⊙ =
a⊙ b ⊙ b⊙ ⊙ a⊙ = a⊙ a⊙ ⊙ a ⊙ a⊙ = a⊙ a⊙ = adom. Similarly, we
have (a • b)cod = bcod.

• For any a ∈ S, (a ⊙ a⊙) ⊙ a = a ⊙ (a⊙ ⊙ a) = a. Then a ⊙ a⊙ and
a⊙ ⊙ a act as the left and right identity, respectively, for composition
(recall that we have identified the objects with identity arrows).

• It follows, then, that every arrow is an isomorphism with a−1 = a⊙,

since a−1 • a = a⊙ ⊙ a = acod and a • a−1 = a ⊙ a⊙ = adom (recall
that we have identified the objects with identity arrows).
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Theorem 3.4 ([10]). IG(S) is an inductive groupoid with, for all a ∈ IG(S),
(a|∗e) = ae for all objects e ≤ acod and (e∗|a) = ea for all objects e ≤
adom.

Notation. Denote the category of inverse semigroups and semigroup homo-
morphisms as IS. Denote the category of inductive groupoids and inductive
functors as IG.

Being able to construct an inductive groupoid given any inverse semigroup
and vice versa is extremely useful. Specifically, Lawson [10] provides proofs
that these constructions induce functors F : IG → IS and F ′ : IS → IG.

This then establishes the following result relating the categories IS and IG :

Theorem 3.5 (Ehresmann-Schein-Nambooripad [8, 4.1.8]). The functors
F : IG → IS and F ′ : IS → IG form an isomorphism of categories.

We will demonstrate this result by giving an example of an inverse semi-
group and then calculating its corresponding inductive groupoid.

Example 3.4. Consider the following inverse semigroup (S,⊙) (semigroup
(5,415) of the smallsemi package of GAP [7]):

⊙ 1 2 3 4 5
1 1 1 1 1 1
2 1 1 4 1 2
3 1 5 1 3 1
4 1 2 1 4 1
5 1 1 3 1 5

It is the case that S is the only non-commutative inverse semigroup of order
5 containing a non-idempotent element. We note that idempotents of S are
E(S) = {1, 4, 5}. Note that 1 = 1 ⊙ 4 = 1⊙ 5, so that 1 ≤ 4 and 1 ≤ 5. The
elements 4 and 5 are incomparable, so that the semilattice structure on E(S)
is

4

❂❂
❂❂

❂❂
❂ 5

✁✁
✁✁
✁✁
✁

1

It is routine to check that the inverses of the elements in S are

1⊙ = 1, 2⊙ = 3, 3⊙ = 2, 4⊙ = 4, and 5⊙ = 5.
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We note that 3dom = 3 ⊙ 3⊙ = 3 ⊙ 2 = 5, 3cod = 3⊙ ⊙ 3 = 2 ⊙ 3 = 4,
2dom = 4, and 2cod = 5. The associated inductive groupoid, then, has

– Objects: {1, 4, 5}

– (Non-identity) Arrows: {2 : 4 → 5, 3 : 5 → 4}

And has the visual appearance (although this representation does not reflect
the order structure and (co)restrictions)

1©1
))

4©
2

**
4

))

5©
3

jj 5
uu

4 Double Inductive Groupoids

In this section, we will extend Lawson’s constructions of inductive groupoids
and inverse semigroups to constructions involving double inverse semigroups.
We will then construct an isomorphism of categories analogous to that be-
tween IG and IS. The first step in extending these constructions is to intro-
duce the notion of a double inductive groupoid.

Definition 4.1. A double inductive groupoid

G = (Obj(G),Ver(G),Hor(G),Dbl(G),≤,.)

is a double groupoid (i.e., a double category in which every vertical and hori-
zontal arrow is an isomorphism and each double cell is an isomorphism with
respect to both the horizontal and vertical composition) such that

(i) (Ver(G),Dbl(G)) is an inductive groupoid.

• We denote the composition in this inductive groupoid – the hor-
izontal composition from Dbl(G) – with ◦. We denote the partial
order on this groupoid as ≤ . If e and f are horizontal identity
cells (vertical arrows), we denote their meet as e ∧h f. For a cell
α ∈ Dbl(G) and a vertical arrow e ∈ Ver(G) such that e ≤ αhdom,
we denote the horizontal restriction of α by e by (e∗|α). Similarly,
if e is a vertical arrow such that e ≤ αhcod, we denote the hori-
zontal corestriction of α by e by (α|∗e).
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(ii) (Hor(G),Dbl(G)) is an inductive groupoid.

• We denote the composition in this inductive groupoid – the vertical
composition from Dbl(G) – with •. We denote the partial order on
this groupoid as . . If e and f are vertical identity cells (horizontal
arrows), we denote their meet as e∧v f. For a cell α ∈ Dbl(G) and
a horizontal arrow e ∈ Hor(G) such that e . αvdom, we denote
the horizontal restriction of α by e by [e∗|α]. Similarly, if e is a
horizontal arrow such that e . αvcod, we denote the horizontal
corestriction of α by e by [α|∗e].

(iii) When defined, vertical (horizontal) composition and horizontal (verti-
cal) (co)restriction must satisfy the middle-four interchange. For ex-
ample, if a and b are double cells and f and g are horizontal arrows
with a ◦ b defined, f ◦ g defined, f . avcod and g . bvcod, then

[a ◦ b|∗f ◦ g] = [a|∗f ] ◦ [b|∗g].

(iv) When defined, vertical (horizontal) composition and horizontal (verti-
cal) meet must satisfy the middle-four interchange. For example, if e,
f, g and h are horizontal arrows with e ◦ g and f ◦ h defined, then

(e ∧v f) ◦ (g ∧v h) = (e ◦ g) ∧v (f ◦ h).

(v) When defined, vertical (horizontal) meet and horizontal (vertical) (co)restriction
must satisfy the middle-four interchange. For example, if e and g are
vertical arrows and f and h are objects with f . evcod and h . gvcod,
then

[e ∧h f |∗g ∧h h] = [e|∗f ] ∧h [g|∗h].

(vi) When defined, vertical (co)restriction and horizontal (co)restriction must
satisfy the middle-four interchange. For example, if a is a double cell,
f . avcod is a horizontal arrow, g ≤ ahcod is a vertical arrow and
x = fhcod ∧ gvcod is an object, then

([a|∗f ]|∗[g|∗x]) = [(a|∗g)|∗(f |∗x)]

(vii) Vertical meet and horizontal meet must satisfy the middle-four inter-
change law; if e, f, g and h are both vertical and horizontal arrows,
then

(e ∧h f) ∧v (g ∧h h) = (e ∧v g) ∧h (f ∧v h).
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(viii) When defined, vertical (horizontal) (co)domain must be functorial with
respect to the horizontal (vertical) meet. For example, if e and f are
horizontal arrows, then

(e ∧v f)hdom = ehdom ∧v fhdom.

(ix) When defined, vertical (horizontal) (co)domain must be functorial with
respect to the horizontal (vertical) (co)restriction. For example, if a is
a double cell and f is a vertical arrow, then

(a|∗f)hdom = (ahdom|∗ahdom).

The reader may find the full list of conditions, as well as some diagrams to
help understand them, in Appendix A.

Definition 4.2. Let G and G ′ be double inductive groupoids. A double induc-
tive functor f : G → G ′ is a double functor whose vertical arrow, horizontal
arrow and double cell functions preserve all partial orders and meets.

Notation. Consider a double inductive functor f : G → G ′. We denote its
object function by f0, its vertical arrow function by fv, its horizontal arrow
function by fh and its double cell function by fd.

Construction 4.1. Given a double inductive groupoid

G = (Obj(G),Ver(G),Hor(G),Dbl(G)),

we construct a double inverse semigroup DIS(G) = (S,⊚,⊙) as follows:

– Its elements are the double cells of G; S = Dbl(G).

– For any a, b ∈ S, define

a⊚ b = (a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

– For any a, b ∈ S, define

a⊙ b = [a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]

12



It follows from Lawson’s analogous Construction 3.1 that each of the
operations above are independently inverse semigroup operations. That these
two inverse semigroup operations satisfy the middle-four interchange law,
however, has yet to be verified. This verification is straight forward – but
tedious – and requires all properties of double inductive groupoids. A full
proof may be found in Appendix B; however, we will provide some visuals
which represent the main idea of the verification, which is this: break the
4-fold semigroup product into a 4-fold composite of double cells, use the
middle-four interchange property of the double inductive groupoids and then
reassemble this composite into the desired 4-fold semigroup product.

=⇒ =⇒

Theorem 4.2. If G is a double inductive groupoid, then DIS(G), as con-
structed in Construction 4.1, is a double inverse semigroup.

Construction 4.3. Given a double inverse semigroup (S,⊚,⊙), we con-
struct a double inductive groupoid

DIG(S) = (Obj(DIG(S)),Ver(DIG(S)),Hor(DIG(S)),Dbl(DIG(S)))

as follows:

– Obj(DIG(S)) = E(S,⊚) ∩ E(S,⊙).

– Ver(DIG(S)) = E(S,⊚).

– Hor(DIG(S)) = E(S,⊙).

– Dbl(DIG(S)) = S(⊚,⊙). Let a, b be any two double cells.

• We define ahdom = a⊚ a⊚ and ahcod = a⊚ ⊚ a. Whenever ahcod =
bhdom, the horizontal composite is defined as a ◦ b = a⊚ b. Define a
horizontal partial order ≤ by a ≤ b if and only if a = e ◦ b = e⊚ b for
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some vertical arrow e. The horizontal meet of two vertical arrows e
and f is defined to be e ∧h f = e⊚ f. Note that since vertical arrows
are contained in S(⊚,⊙), this ≤ is also a partial order on the vertical
arrows E(S,⊚). If we have a vertical arrow e ≤ ahdom, we define
(a|∗e) = a⊚ e and if e ≤ ahcod, we define (e∗|a) = e⊚ a.

• We define avdom = a⊙ a⊙ and avcod = a⊙ ⊙ a. Whenever avcod =
bvdom, the vertical composite is defined as a • b = a ⊙ b. Define a
vertical partial order . by a . b if and only if a = e • b = e ⊙ b for
some horizontal arrow e. The vertical meet of two horizontal arrows
e and f is defined to be e ∧v f = e ⊙ f. Note that since horizontal
arrows are contained in S(⊚,⊙), this . is also a partial order on the
horizontal arrows E(S,⊙). If we have a horizontal arrow e . avdom,
we define [a|∗e] = a⊙ e and if e . avcod, we define [a∗|e] = e⊙ a.

Note 1.

• The intersection E(S,⊙)∩E(S,⊚) is non-empty since, for any a ∈ S,

(a⊙ a⊙)⊚ (a⊙ a⊙)⊚ ∈ E(S,⊙) ∩ E(S,⊚).

• From Lawson’s Construction 3.3, it follows that

(Ver(DIG(S)),Dbl(DIG(S))) and (Hor(DIG(S)),Dbl(DIG(S)))

are both inductive groupoids with the orders, meets, and (co)restrictions
defined as above.

• We have a groupoid structure in both directions and the horizontal and
vertical compositions are defined by the horizontal and vertical semi-
group products, respectively. These semigroup products satisfy the in-
terchange law and thus so do the compositions. That is, if S is a double
inverse semigroup, then DIG(S), as constructed, is indeed a well de-
fined double groupoid.

• That DIG(S) satisfies the remaining properties of double inductive
groupoids is a simple verification which is especially simplified by the
commutativity of double inverse semigroups established in Theorem 2.2.
For a full proof, see [3, Lemmas 7.3.2 – 7.3.11].

We summarise the preceding construction and its notes in the following
theorem:

14



Theorem 4.4. If S(⊚,⊙) is a double inverse semigroup, then DIG(S), as
constructed in Construction 4.3, is a double inductive groupoid.

Notation. We denote the category of double inductive groupoids with dou-
ble inductive functors as DIG and we denote the category of double inverse
semigroups with double semigroup homomorphisms as DIS.

Our next goal is to prove that the constructions just introduced give rise
to functors forming an isomorphism of the categories DIG and DIS.We will
make use of a simple, yet important, observation which follows directly from
the definition of double semigroup homomorphism:

Note 2. Let ϕ : (S,⊚,⊙) → (S ′,⊚′,⊙′) be a double semigroup homo-
morphism. If e ∈ E(S,⊙) is an idempotent with respect to ⊙, then eϕ =
(e⊙ e)ϕ = eϕ⊙′ eϕ and eϕ ∈ E(S ′,⊙′) and thus E(S,⊙) ⊆ E(S,⊙)ϕ. Simi-
larly, E(S,⊚) ⊆ E(S,⊚)ϕ. This tells us that ϕ preserves idempotents in both
directions.

We will now define the functors of which the isomorphism comprises.

Definition 4.3. We define a functor F : DIG → DIS with the following
data:

• On objects: For any double inductive groupoid G, define GF = DIS(G),
as defined in Construction 4.1. Recall that DIS(G) = Dbl(G) with
products defined, for any a, b ∈ DIS(G), as

a⊚ b = (a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

a⊙ b = [a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]

• On arrows: For any double inductive functor f : G → G ′, define fF :
DIS(G) → DIS(G ′) to be the double cell function fd of f.

Proposition 4.1. The functor F : DIG → DIS as defined above is indeed
a functor.

Proof. Since the arrow function of F returns the double cell function of a
double functor, functoriality is immediate from the definition of functor com-
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position. One also notes that, for any a, b ∈ DIS(G), we have

(a⊙ b)fF = (a⊙ b)fd

=
(

[a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]
)

fd

=
(

[a|∗avcod ∧v bvdom]
)

fd •
′
(

[avcod ∧v bvdom∗|b]
)

fd

(fd preserves composition)

= [afd|∗(avcod ∧v bvdom)fd] •
′ [(avcod ∧v bvdom)fd∗|bfd]

(fd preserves (co)restrictions)

= [afd|∗avcodfd ∧v bvdomfd] •
′ [avcodfd ∧v bvdomfd∗|bfd]

(fd preserves meets)

= [afd|∗afdvcod ∧v bfdvdom] •′ [afdvcod ∧v bfdvdom∗|bfd]

(fd preserves (co)domains)

= afd ⊙
′ bfd

= afF ⊙′ bfF.

Similarly, we have that (a⊚ b)fF = afF ⊚′ bfF. That is, fF is justifiably a
double semigroup homomorphism.

Definition 4.4. We define a functor F ′ : DIS → DIG with the following
data:

• On objects: For any double inverse semigroup S, define SF ′ = DIG(S),
as defined in Construction 4.3. Recall that DIG(S) has the following
data:

– DIG(S)0 = E(S,⊙) ∩ E(S,⊚).

– Ver(DIG(S)) = E(S,⊚).

– Hor(DIG(S)) = E(S,⊙).

– Dbl(DIG(S)) = S(⊙,⊚).

• On arrows: For any double semigroup homomorphism ϕ : S → S ′

between double inverse semigroups, define ϕF ′ : DIG(S) → DIG(S ′)
to be the double (inductive) functor with the following data:

– An object function defined to be ϕ restricted to E(S,⊙)∩E(S,⊚).
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– A vertical arrow function defined to be ϕ restricted to E(S,⊚).

– A horizontal arrow function defined to be ϕ restricted to E(S,⊙).

– A double cell function defined to be ϕ.

Proposition 4.2. The functor F ′ : DIS → DIG as defined above is indeed
a functor.

Proof. The above defined object, vertical arrow and horizontal arrow func-
tions are well-defined due to the fact that double semigroup homomorphisms
preserve idempotents (see Note 2). The (double) functoriality of F ′ follows
from the fact that the vertical and horizontal arrow functions are defined as
restrictions to sets of idempotents and that the double cell function is the
identity. For example, if

(S,⊙,⊚)
ϕ

−→ (S ′,⊙′,⊚′)
ϕ′

−→ (S ′′,⊙′′,⊚′′)

are composable double inverse semigroup homomorphisms, then the vertical
arrow function of (ϕ;ϕ′)F ′ is

(ϕ;ϕ)|E(S,⊚) = ϕ|E(S,⊚);ϕ
′|ϕ|E(S,⊚)

= ϕ|E(S,⊚);ϕ
′|E(S,⊚)ϕ = ϕ|E(S,⊚);ϕ

′|E(S′,⊚′).

It remains, then, to show that ϕF ′ is actually inductive (since each function
of ϕF ′ is either ϕ or a restriction of ϕ, we will write only ϕ) :

(a) We check that ϕ preserves all partial orders. If a, b ∈ DIG(S) with a ≤ b,

then by definition a = e◦b = e⊚b for some e ∈ Ver(DIG(S)) = E(S,⊚).
Since ϕ is a homomorphism, then,

a = e⊚ b

=⇒ aϕ = (e⊚ b)ϕ

=⇒ aϕ = eϕ⊚′ bϕ

=⇒ aϕ = eϕ ◦′ bϕ

Since ϕ preserves idempotents, eϕ is indeed a vertical arrow and thus
aϕ ≤′ bϕ in DIG(S ′). Similarly, if a . b in DIG(S), then aϕ .′ bϕ in
DIG(S ′).
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(b) Since ϕ is a double inverse semigroup homomorphism, ϕ preserves all
meets. For example, if e and f are vertical arrows in DIG(S), then

(e ∧h f)ϕ = (e⊚ f)ϕ = eϕ⊚′ fϕ = eϕ ∧′
h fϕ.

(c) We verify that ϕ preserves all (co)restrictions. Let a be a double cell
and e ≤ ahcod a vertical arrow in DIG(S). Then aϕ is a double cell of
DIG(S ′) and, since ϕ preserves orders, eϕ ≤′ aϕhcod. Also,

(e∗|a)ϕ = (a⊚ a)ϕ = eϕ⊚′ aϕ = (eϕ∗|aϕ)

with
(eϕ∗|aϕ)hcod = (e∗|a)ϕhcod = (e∗|a)hcodϕ = eϕ.

It can then be said that the functor ϕ defined in the arrow function of F ′ is
indeed inductive.

We may now state and prove the following theorem:

Theorem 4.5. The pair of functors

DIG
F //

DIS
F ′

oo

is an isomorphism of categories.

Proof. We check that these two functors compose to the identity functors.
Object functions: We know by our construction that the elements of a

double inverse semigroup S are exactly the double cells of DIG(S) and that
the double cells of a double inductive groupoid G are exactly the elements of
DIS(G). Then it is the case that the elements of DIS(DIG(S)) are exactly
the elements of S and the double cells of DIG(DIS(G)) are exactly the double
cells of G.

We show that the products of elements in DIS(DIG(S)) are the same as
those in S. If a, b ∈ S, we consider the product a⊙ b. In DIS(DIG(S)), this
product is

[a|∗avcod ∧v bvdom] • [avcod ∧v bvdom]

= a⊙ (a⊙ ⊙ a)⊙ (b⊙ b⊙)⊙ (a⊙ ⊙ a)⊙ (b⊙ b⊙)⊙ b

= a⊙ ((a⊙ ⊙ a)⊙ (a⊙ ⊙ a))⊙ ((b⊙ b⊙)⊙ (b⊙ b⊙))⊙ b

= (a⊙ a⊙ ⊙ a)⊙ (b⊙ b⊙ ⊙ b)

= a⊙ b.
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Similarly, a⊚ b in DIS(DIG(S)) is the same as in S. Since the elements and
the products are the same, we can say that DIS(DIG(S)) = S.

It will finally be shown that the composites of double cells in GFF ′ =
DIG(DIS(G)) are the same as those in G.We will then be done since vertical
and horizontal arrows can be considered as identity double cells for horizontal
and vertical composition, respectively. For any double cells a, b ∈ G, if the
composite a • b exists, we know that

a⊙ b = [a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]

in the double inverse semigroup DIS(G). However, since the composite a • b
exists, avcod = bvdom and so this product in DIG(DIS(G)), then, becomes

[a|∗avcod] • [bvdom∗|b] = (a⊙ a⊙ ⊙ a) • (b⊙ b⊙ ⊙ b)

= a • b.

Similarly, a ◦ b in DIG(DIS(G)) is the same as in G and we are done. Since
the double cells (and thus horizontal and vertical arrows) and the composites
are the same, we can say that DIG(DIS(G)) = G.

Arrow functions: If f is any inductive functor, then fF is the double
cell function and thus fFF ′ is a functor whose double cell function is indeed
just the the double cell function of f. The object, vertical arrow and hori-
zontal arrow functions of fFF ′ are also just the object, vertical arrow and
horizontal functions of f. For example, the vertical arrow function of fFF ′

is the restriction of fF to the idempotents of the horizontal operation in the
given double inverse semigroup. However, these idempotents are exactly the
vertical arrows and thus the restriction of fF by the horizontal idempotents
is exactly the vertical arrow function of f.

If ϕ is any double semigroup homomorphism, then the double cell function
of ϕF ′ is just ϕ. Then ϕF ′F = ϕ, since ϕF ′F is defined to be the double cell
function of ϕF ′.

5 Main Result

We will now use the established isomorphism of categories between DIS and
DIG to formulate a characterisation of double inverse semigroups.

Lemma 5.1. Let (S,⊙,⊚) be a double inverse semigroup. For all a, b ∈
E(S,⊙) ∩ E(S,⊚),

a⊙ b = a⊚ b.

19



Proof. We first note that, since a and b are idempotent with respect to ⊙
and ⊚,

a⊙ a = a = a⊚ a

and
b⊙ b = b = b⊚ b.

Also,

(a⊚ b)⊙ (a⊚ b) = (a⊙ a)⊚ (b⊙ b)

= a⊚ b.

Using these facts and the commutativity in a double inverse semigroup,

a⊙ b = (a⊙ b)⊚ (a⊙ b)

= (a⊙ b)⊚ (b⊙ a)

= (a⊚ b)⊙ (b⊚ a)

= (a⊚ b)⊙ (a⊚ b)

= a⊚ b.

Recall that our isomorphism gives rise to the following three facts:

• For all double cells a and b, a ≤ b (a . b, respectively) if and only
if there is some vertical arrow e such that a = e ⊚ b (there is some
horizontal arrow e such that a = e⊙ b, respectively)

• For all vertical arrows e and f, e∧h f = e⊚ f (for all horizontal arrows
e and f, e ∧v f = e⊙ f, respectively).

• For all double cells a and vertical arrows e, (e∗|a) = e⊚a (for all double
cells a and horizontal arrows e, [e∗|a] = e⊙ a, respectively).

That is, we can consider the partial order, meets and (co)restrictions as
semigroup products. Because, on objects, these semigroup products coincide,
we have the following corollary:

Corollary 1. Let G be a double inductive groupoid. For all objects a, b ∈
Obj(G),

a ≤ b if and only if a . b

and
a ∧h b = a ∧v b.
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Note 3. In any double inductive groupoid G, recall that the sets Ver(G) and
Hor(G) are posets with partial orders . and ≤, respectively. Because objects
in Obj(G) can be identified with either vertical or horizontal arrows, Obj(G)
is also a poset with respect to both . and ≤ . By Corollary 1, however, these
partial orders collapse on Obj(G) so that it is unambiguous to talk about
Obj(G) as a partially ordered set.

Having established that the two order structures of a double inductive
groupoid coincide on its objects, we seek to further study and describe the
relationship between the order on the objects and the orders on both the
horizontal and vertical arrows.

Let G be a double inductive groupoid and let DIS(G) be its corresponding
double inverse semigroup. Given a double cell (element of DIS(G)) a, it will
have the following form:

A
a⊙a⊙

//

a⊚a⊚

��

a

B

a⊚⊚a
��

C
a⊙⊙a

// D

For convenience, let ah = a⊙ a⊙, av = a⊚ a⊚. By Theorem 2.2, both inverse
semigroup products are commutative and a, then, can be written as

A
ah //

av •
��

a

B

av•
��

C ah
// D

Since we can also write the domains and codomains of vertical and horizontal
arrows as semigroup properties, commutativity then implies that

A = ahhdom = ahhcod = B = avvdom = avvcod = D = ahvcod = C.

We conclude that every double cell a ∈ Dbl(G), a has the following form:

A
ah //

av •
��

a

A

av•
��

A ah
// A
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Let G be a double inductive groupoid and let A be an object of G. Then
there is a natural collection of double cells

(A)SG =















a ∈ Dbl(G)

∣

∣

∣

∣

∣

A

a

ah //

av •
��

A

av•
��

A ah
// A















Though definitely a double groupoid, it is not immediately obvious that
(A)SG is a double inductive groupoid. That is, it could be possible that
meets or (co)restrictions may not be well defined on (A)SG (the meet of two
arrows in (A)SG may not be in (A)SG , for example). The following propo-
sition, however, allows us to properly call them one-object double inductive
groupoids:

Proposition 5.1. For each object A ∈ Obj(G), the above-defined collection
(A)SG is a one-object double inductive groupoid.

Proof. These objects are subobjects of double groupoids and are thus double
groupoids themselves. We now check the following properties:

(i) Vertical meets of horizontal arrows in (A)SG are again horizontal arrows
in (A)SG .

(ii) Horizontal meets of vertical arrows in (A)SG are again vertical arrows
in (A)SG .

(iii) Horizontal (co)restrictions of double cells in (A)SG by vertical arrows
in (A)SG are again double cells of (A)SG .

(iv) Vertical (co)restrictions of double cells in (A)SG by horizontal arrows
in (A)SG are again double cells of (A)SG .

To prove (i), let f and g be horizontal arrows in (A)SG . We must show
that the horizontal domain and codomain of f ∧v g are both A. This is true
since, in G, we have the property that meets preserve domains and codomains.
That is,

(f ∧v g)hdom = fhdom ∧v ghdom = A ∧v A = A.

Similarly, (f ∧v g)hcod = A.

The proof of (ii) is similar to that of (i).
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To prove (iii), we note that if we have a cell a ∈ (A)SG and a vertical
arrow e ≤ ahdom in (A)SG , then the domain of the restriction (e∗|a) is e.
Since e ∈ (A)SG , the domain and codomain of e are both A. Because all four
corners of a double cell are equal, all four corners of (e∗|a) are A and thus,
this is an element of (A)SG .

The proof of (iv) is similar to that of (iii).
These one-object double groupoids, then, are closed under meets and

(co)restrictions. Because they are subobjects of a double inductive groupoid,
they must satisfy all the axioms of a double inductive groupoid. Therefore,
these one-object double groupoids are indeed one-object double inductive
groupoids.

By our isomorphism of categories, we can consider these one-object dou-
ble inductive groupoids as a special class of double inverse semigroups whose
operations share only one idempotent. Recall that an Abelian group (A,+)
can be considered as an improper double inverse semigroup (A,+,+). Since
groups have only one idempotent, the double inductive groupoid correspond-
ing to A will have only one object, one vertical arrow and one horizontal
arrow. This motivates the proof of the following Proposition, which shows
that we can conversely think of one-object double inductive groupoids as
Abelian groups.

Proposition 5.2. If A is a one-object double inductive groupoid, then A is
an Abelian group.

Proof. We first recall that in any double inductive groupoid, horizontal com-
position and vertical meets of horizontal arrows satisfy the middle-four in-
terchange law. That is,

(f ◦ g) ∧v (f
′ ◦ g′) = (f ∧v f

′) ◦ (g ∧v g
′).

We note that a∧v b = a implies that a . b and thus preservation of meets in
this way implies the following law about preserving the vertical partial order:

f . f ′, g . g′ implies f ◦ g . f ′ ◦ g′

Of course, in a single-object double inductive groupoid, all horizontal ar-
rows have the same domain and codomain and are thus guaranteed to be
composable.
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We show now that there is only one horizontal arrow, namely the identity
id. Suppose that f and g are two horizontal arrows. Since the horizontal
arrows form a meet-semilattice with respect to the vertical order, the meet
of f and g exist and f ∧v g . f, g. Thus by preservation of the vertical partial
order and inverses by horizontal composition,

(f ∧v g)
−1 ◦ f . f−1 ◦ f = id

and
id = (f ∧v g)

−1 ◦ (f ∧v g) . (f ∧v g)
−1 ◦ f.

And thus f = f ∧v g. Similarly g = f ∧v g and therefore f = g(= id). That is,
the only horizontal arrow is id. Similarly, there is only the vertical identity
arrow.

Having only one vertical and horizontal arrow, every pair of double cells
in A is composable in either direction. More specifically, each of the horizon-
tal/vertical restrictions are trivial and thus the inverse semigroup operations
reduce to the compositions in the double inductive groupoid associated with
A. The compositions, however, are group operations and A is therefore an
Abelian group by Eckmann-Hilton.

If A ∈ Obj(G) and a ∈ (A)SG and e ≤ A is an object (i.e., is both a
horizontal and vertical arrow), then we know that the unique restriction of
a to e is in (e)SG and has the form

e
(e∗|ah)

//

(e∗|av)

��

(e∗|a)

e

(e∗|av)

��

e
(e∗|ah)

// e

We now consider the following map between (A)SG and (e)SG :

ϕe≤A : (A)SG → (e)SG

a 7→ (e∗|a)

If a, b ∈ (A)SG , then

(a • b)ϕe≤A = (e∗|a • b)

= (e∗|a) • (e∗|b)

= (a)ϕe≤A • (b)ϕe≤A.
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That is, ϕe≤A : (A)SG → (e)SG is an Abelian group homomorphism. The
discussion above shows that associated to any double inductive groupoid G,
we have a presheaf of Abelian groups, denoted

SG : Obj(G)op → Ab.

On objects we can send A to (A)SG and send an arrow A ≤ B to the
Abelian group homomorphism ϕA≤B : (B)SG → (A)SG (as described above)
between (B)SG and (A)SG .

We will establish an isomorphism of categories between the category of
double inductive groupoids and presheaves of Abelian groups over meet-
semilattices. We will show that the above construction induces a functor. We
first, however, introduce the notion of a morphism between two presheaves
of Abelian groups on meet-semilattices:

Definition 5.1. A morphism of presheaves of Abelian groups on meet-
semilattices P : Lop → Ab and P ′ : (L′)op → Ab is an ordered pair

(f, {ψA}A∈L) : P → P ′

consisting of an order and meet preserving function f : L→ L′ and a family
of group homomorphisms {ψA : AP → (Af)P ′} indexed by the objects of A
such that, for any objects A ≤ B in L, the following diagram commutes:

AP

ψA

��

BP
ϕA≤B

oo

ψB

��

(Af)P ′ (Bf)P ′

ϕ′
Af≤′Bf

oo

Notation. We denote the category of presheaves of Abelian groups on meet-
semilattices with presheaf morphisms by AbMeetSLatt.

We will now define the functors of which the isomorphism comprises.

Definition 5.2. We define a functor F : DIG → AbMeetSLatt with the
following data:

• On objects: If G is a double inductive groupoid, define GF to be the
presheaf SG of Abelian groups on the meet-semilattice Obj(G) as de-
tailed above (i.e., given by the restrictions).
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• On arrows: Given a double inductive functor f : G → G ′, define a
morphism of presheaves fF = (f0, {fd|(A)SG

}A∈Obj(G)), where

– f0 is the object function of f.

– fd|(A)SG
is the double cell function of f restricted to those cells who

have all corners A.

Note 4. Given a double inductive functor f : G → G ′, fF is indeed
a morphism in AbMeetSLatt. By definition, f0 is a morphism of meet-
semilattices. If A ≤ B in Obj(G), we check that the following diagram com-
mutes:

ASG

fd|ASG

��

BSG

fd|BSG

��

ϕA≤B
oo

(Af0)SG′ (Bf0)SG′
ϕ′
Af0≤

′Bf0

oo

Since any object in a double category can be identified with an identity double
cell and f is a double functor, for any b ∈ BSG ,

b(ϕA≤B; fd|ASG
) = (A∗|b)fd|ASG

= (Afd|BSG ∗| bfd|BSG
)′

= (Af0 ∗| bfd|BSG
)′

= b(fd|BSG
;ϕ′

Af0≤′Bf0
)

and thus the required diagram commutes.

Being restrictions of double cell functions of double functors, each restric-
tion of fd in the above definition preserves composition and identities. The
following Proposition, then, follows.

Proposition 5.3. The functor F : DIG → AbMeetSLatt as defined above
is indeed a functor.

Definition 5.3. We define a functor F ′ : AbMeetSLatt → DIG with the
following data:

• On objects: If P : Lop → Ab is a presheaf of Abelian groups on a
meet-semilattice, define a double inductive groupoid G = PF ′ with the
following data:
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– Objects: Obj(G) = L

– Vertical/horizontal arrows: Ver(G) = Hor(G) = {eA : A ∈ L},
where eA is the group unit of the Abelian group AP for each A in
L.

– Double cells: Dbl(G) =
∐

A∈LAP, the disjoint union of all Abelian
groups AP for A in L.

– Since the vertical and horizontal arrows of G are the same, we will
unambiguously not differentiate between directions in the following
definitions of (co)domains, composition, meets and (co)restrictions.
For each object A ∈ L, there is exactly one horizontal/vertical ar-
row with (co)domain A (the unit eA of the Abelian group AP ).
There is therefore a one-to-one correspondence A ↔ eA : A → A

between the objects and vertical/horizontal arrows of G.

– A double cell a is contained in an Abelian group AP for some
A ∈ L. We define ahdom = ahcod = avdom = vcod = eA. The
composite of two double cells, then, is defined when they are inside
the same group and is defined to be the group product. Given
two vertical/horizontal arrows eA and eB, we define their meet
eA ∧ eB = A ∧ B to be that from L. If a is a double cell and
eu ≤ eA = ahdom, then define the restriction of a to eu to be
(eu∗|a) = eu ∗u (a)ϕu≤A = (a)ϕu≤A. Corestrictions are similarly
defined.

• On arrows: If (f, {ψA}A∈L) : P → P ′ is a morphism of presheaves,
define a double inductive functor

g = (f, {ψA}A∈L)F
′ : PF ′ → P ′F ′

with the following data:

– An object function: g0 = f.

– A vertical/horizontal arrow function: For all A ∈ L,

(eA)gv = (eA)gh = e′Af ,

the unit element of the group (Af)P ′.
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– A double cell function gd defined by, for each double cell a,

(a)gd = (a)ψahdomvdom

(evaluate each a using the group homomorphism whose index is
the object in the four corners of a).

Proposition 5.4. The functor F ′ : AbMeetSLatt → DIG as defined above
is indeed a functor.

Proof. This is functorial, since it is composed of group homomorphisms.
That is, composition (the group products) and identities are preserved. Also,

(a) This preserves all partial orders, since f is an order preserving map.

(b) F ′ preserves all meets. Recall that we have identified objects A with the
group unit eA in the group AP. Since f is meet-preserving, then,

(eA ∧ eB)gv = e′(eA∧eB)f

= e′(A∧B)f

= e′Af∧′Bf

= Af ∧′ Bf

= eAf ∧
′ eBf

= (eA)gv ∧
′ (eB)gv.

(c) F ′ preserves (co)restrictions. Let a ∈ AP be a double cell and let eu ≤
eA = ahdom be a group identity. Note, then, that the restriction (eu∗|a)
of a to eu lives inside of uP. From the definition of presheaf morphism,
the ψ maps commute with the ϕ maps and thus

(eu∗|a)gd = (eu∗|a)ψu

= (a)(ϕu≤A;ψu)

= (a)(ψA;ϕuf≤Af)

= (aψA)ϕuf≤Af

= (euf ∗|aψA)

= (eugd∗|agd)

and F ′ preserves restrictions. Similarly, F ′ preserves corestrictions.
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It can then be said that the functor g defined in the arrow function of F ′ is
indeed inductive.

Finally, we may prove the following:

Theorem 5.1. The pair of functors

DIG
F //

AbMeetSLatt
F ′

oo

is an isomorphism of categories.

Proof. We check that these two functors compose to the identity functors.

(1) Object functions: Given a presheaf P : Lop → Ab, we check that
PF ′F = P. First, PF ′ is the double inductive groupoid with objects L,
vertical/horizontal arrows the identity elements and double cells the dis-
joint union of the Abelian groups AP for A ∈ L.When we send this dou-
ble inductive groupoid into presheaves, we have a presheaf P ′ : Lop → Ab

whose object function sends elements of L to its corresponding one-object
double inductive groupoid in PF ′ and sends arrows to group homo-
morphisms defined by the restriction in PF ′. We verify that these two
presheaves agree on both their object and arrow functions:

(i) On objects: Given B ∈ L,

BP ′ =











B //

��
b

B

��

B // B

∣

∣

∣

∣

b ∈ Dbl(G) =
∐

A∈L

AP











= BP,

since every double cell of this form must be in the group BP.

(ii) On arrows: Suppose that B ≤ C in L. We then have a map ϕ′
B≤C :

CP ′ → BP ′ = CP → BP given by the restriction in PF ′, which
is defined by evaluation of the homomorphism ϕB≤C : CP → BP

from P. Then, for all c ∈ CP,

(c)ϕ′
B≤C = (B∗|c) = (c)ϕB≤C .
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Conversely, suppose that we are given a double inductive groupoid G.We
check that GFF ′ = G. We know that GF is a presheaf P : Obj(G)op →
Ab. Sending this presheaf into double inductive groupoids, then, gives
us a double inductive groupoid with objects Obj(G), vertical/horizontal
arrows all identities and double cell the disjoint union of the groups in
the image of P. It was shown before, however, that a double inductive
groupoid consists solely of cells that lie inside of these groups and have
only identities for vertical and horizontal arrows. It is clear, then, that
this is the same double inductive groupoid, or that GFF ′ = G.

(2) Arrow Functions: Given a morphism (f, {ψA : AP → (Af)P ′} : P → P ′

of presheaves, its image under F ′ in DIG is the double functor whose
object function is f and whose double cell function is comprised of the ψA
maps. The image of this double functor under F, then, is just the presheaf
morphism consisting of f : L → L′ and, for each A ∈ L, the double cell
function restricted to A, which is equal to ψA, and this composite is the
identity.

Conversely, suppose that f : G → G ′ is a double inductive functor. Then
fF is the morphism of presheaves

(f0, {fd|ASG
: ASG → (Af0)SG}) : GF → G ′F.

The image of this morphism under F ′, then will be the double inductive
functor whose

– Object function is f0.

– Vertical and horizontal arrow functions map identities to the identities
under f0. Since a double inductive groupoid contains only identities as
vertical and horizontal arrows, these are the vertical and horizontal
arrow functions from f.

– Double cell function is defined by the double cell function of f re-
stricted to ASG for each object A. Since every double cell in a G is
contained in some ASG , these double cell functions also coincide.

That is, these double inductive functors are equal and f = fFF ′.

Having defined two functors whose composition is the identity functor in
either way, we have completed the proof.
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We have shown that double inverse semigroups are exactly presheaves of
Abelian groups on meet-semilattices. In particular, we have seen that double
inverse semigroups consist of a collection of single object double groupoids
(indexed by its idempotents) in which both the vertical and horizontal com-
position coincide (i.e., groups). Add to this Kock’s result that double inverse
semigroups commute and we have the following result:

Theorem 5.2. Double inverse semigroups are commutative and improper.
That is to say that (S,⊙,⊚) is a double inverse semigroup if and only if both
⊙ and ⊚ are commutative inverse semigroup operations with ⊚ = ⊙.

Note 5. A Clifford semigroup is a completely regular inverse semigroup;
that is, each element is in some subgroup of the semigroup. An inverse
semigroup S is a Clifford semigroup if it satisfies xx−1 = x−1x for all x ∈ S

[2]. Theorem 5.2 says, then, that double inverse semigroups are commutative
Clifford semigroups.

Appendix A Full Definition of Double Induc-

tive Groupoids

Definition A.1. A double inductive groupoid

G = (Obj(G),Ver(G),Hor(G),Dbl(G),≤,.)

is a double groupoid (i.e., a double category in which every vertical and hori-
zontal arrow is an isomorphism and each double cell is an isomorphism with
respect to both the horizontal and vertical composition) such that

(i) (Ver(G),Dbl(G)) is an inductive groupoid.

• We denote the composition in this inductive groupoid – the hor-
izontal composition from Dbl(G) – with ◦. We denote the partial
order on this groupoid as ≤ . If e and f are horizontal identity
cells (vertical arrows), we denote their meet as e ∧h f. For a cell
α ∈ Dbl(G) and a vertical arrow e ∈ Ver(G) such that e ≤ αhdom,
we denote the horizontal restriction of α by e by (e∗|α). Similarly,
if e is a vertical arrow such that e ≤ αhcod, we denote the hori-
zontal corestriction of α by e by (α|∗e).
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(ii) (Hor(G),Dbl(G)) is an inductive groupoid.

• We denote the composition in this inductive groupoid – the vertical
composition from Dbl(G) – with •. We denote the partial order on
this groupoid as . . If e and f are vertical identity cells (horizontal
arrows), we denote their meet as e∧v f. For a cell α ∈ Dbl(G) and
a horizontal arrow e ∈ Hor(G) such that e . αvdom, we denote
the horizontal restriction of α by e by [e∗|α]. Similarly, if e is a
horizontal arrow such that e . αvcod, we denote the horizontal
corestriction of α by e by [α|∗e].

(iii) When defined, vertical (horizontal, respectively) composition and hor-
izontal (vertical, respectively) (co)restriction must satisfy the middle-
four interchange. Explicitly,

(a)
(

a • b|∗f • g
)

=
(

a|∗f
)

•
(

b|∗g
)

.

(b)
[

a ◦ b|∗f ◦ g
]

=
[

a|∗f
]

◦
[

b|∗g
]

.

(c)
(

f • g∗|a • b
)

=
(

f ∗|a
)

•
(

g∗|b
)

.

(d)
[

f ◦ g∗|a ◦ b
]

=
[

f ∗|a
]

◦
[

g∗|b
]

.

For example, for (a) to be well defined, we need that a and b are double
cells and f and g are vertical arrows with a • b defined, f • g defined,
f ≤ ahcod and g ≤ bhcod. The rule

(

a • b|∗f • g
)

=
(

a|∗f
)

•
(

b|∗g
)

,

visually:

//

•

��

(

a|∗f
)

f•

��//

•

��

(

b|∗g
)

g•

��//

=

//

•

��

(

a•b|∗f•g
)

f•g•

��//

(iv) When defined, vertical (horizontal, respectively) composition and hor-
izontal (vertical, respectively) meet must satisfy the middle-four inter-
change. Explicitly,

(a) (e ∧v f) ◦ (g ∧v h) = (e ◦ g) ∧v (f ◦ h).

(b) (e ∧h f) • (g ∧h h) = (e • g) ∧h (f • h).
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For example, for rule (a) to be well defined, we need that e, f, g and h
are horizontal arrows with e ◦ g and f ◦ h defined. The rule (e ∧h f) •
(g ∧h h) = (e • g) ∧h (f • h), visually:

e•

��

f•

��

g•

��

∧h

h•

��

=

e∧hf•

��

g∧hh•

��

(v) When defined, vertical (horizontal) meet and horizontal (vertical) (co)restriction
must satisfy the middle-four interchange. Explicitly,

(a) (e|∗f) ∧v (g|∗h) = (e ∧v g|∗f ∧v h).

(b) [e|∗f ] ∧h [g|∗h] = [e ∧h g|∗f ∧h h].

(c) (e∗|f) ∧v (g∗|h) = (e ∧v g∗|f ∧v h).

(d) [e∗|f ] ∧h [g∗|h] = [e ∧h g∗|f ∧h h].

For example, for rule (b) to be well defined, we need that e and g are
vertical arrows and f and h are objects with f . evcod and h . gvcod.
The rule (e|∗f) ∧v (g|∗h) = (e ∧v g|∗f ∧v h), visually:

(e|∗f)
//

∧v

f

(g|∗h)
// h

= (e∧vg|∗f∧vh)
// f ∧v h

(vi) When defined, vertical (co)restriction and horizontal (co)restriction must
satisfy the middle-four interchange. Explicitly,

(a) ([a|∗f ]|∗[g|∗x]) = [(a|∗g)|∗(f |∗x)].

(b) [(a|∗g)|∗(f |∗x)] = ([a|∗f ]|∗[g|∗x]).

(c) ([x∗|g]∗|[f ∗|a]) = [(x∗|f)∗|(g∗|a)].

(d) [(x∗|f)∗|(g∗|a)] = ([x∗|g]|[f ∗|a]).
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The rule ([a|∗f ]|∗[g|∗x]) = [(a|∗g)|∗(f |∗x)], visually:

//

�� ��

g

��

a ≥

// gvcod

f
//

.

fhcod x= fhcod ∧ gvcod.

≤

(vii) When defined, vertical meet and horizontal meet must satisfy the middle-
four interchange law:

(e ∧h f) ∧v (g ∧h h) = (e ∧v g) ∧h (f ∧v h).

(viii) When defined, vertical (horizontal) (co)domain must be functorial with
respect to the horizontal (vertical) meet. Explicitly,

(a) (e ∧h f)vdom = evdom ∧h fvdom.

(b) (e ∧h f)vcod = evcod ∧h fvcod.

(c) (e ∧v f)hdom = ehdom ∧v fhdom.

(d) (e ∧v f)hcod = ehcod ∧v fhcod.

The rule (e ∧h f)vdom = evdom ∧h fvdom, visually:

A

e

��

B

f

��

A ∧h B

e∧hf

��

(ix) When defined, vertical (horizontal) (co)domain must be functorial with
respect to the horizontal (vertical) (co)restriction. Explicitly,

(a) (a|∗e)vdom = (avdom|∗evdom).

(b) (a|∗e)vcod = (avcod|∗evcod).

(c) (e∗|a)vdom = (evdom∗|avdom).
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(d) (e∗|a)vcod = (evcod∗|avcod).

(e) [a|∗e]hdom = [ahdom|∗ehdom].

(f) [a|∗e]hcod = [ahcod|∗ehcod].

(g) [e∗|a]hdom = [evdom∗|ahdom].

(h) [e∗|a]hcod = [ehcod∗|ahcod].

The rules (a|∗e)vdom = (avdom|∗evdom) and (a|∗e)hdom = (ahdom|∗ehdom),
visually:

��

(a|∗e)

(avdom|∗evdom)
//

e

��

(ahdom|∗ehdom)
//

Appendix B Proof of the Interchange Law in

DIS (G)

Given a double inductive groupoid G, refer to Section 4 for the construction of
the double inverse semigroup DIS(G) based on G. We give here a full proof
that the horizontal and vertical operations of DIS(G) satisfy middle-four
interchange law:

Proposition B.1. For all a, b, c, d ∈ DIS(G), (a⊚b)⊙(c⊚d) = (a⊙c)⊚(c⊙d).

Before proving this proposition, we will prove some smaller results that
will more easily allow us to handle the mechanics of the proof. During the
proof, we will find ourselves in the situation where we want to talk about
the vertical composite of two vertical (co)restrictions that are themselves
horizontal composites of horizontal (co)restrictions. This proposition allows
us to break this nested composite into a four-fold product of double cells in
G.

For double cells a, b, c, d ∈ G, define u = ahcod∧hbhdom and v = chcod∧h
dhdom. Consider, then, the following composite in DIS(G) :

35



Proposition B.2. (i)

[

(a|∗u) ◦ (u∗|b)

∣

∣

∣

∣

∗

{

(a|∗u) ◦ (u∗|b)
}

vcod ∧v
{

(c|∗v) ◦

(v∗|d)
}

vdom

]

=

[

(a|∗u)

∣

∣

∣

∣

∗

(a|∗u)vcod∧v(c|∗v)vdom

]

◦

[

(u∗|b)

∣

∣

∣

∣

∗

(u∗|b)vcod∧v(v∗|d)vdom

]

(ii)

[

{

(a|∗u) ◦ (u∗|b)
}

vcod ∧v
{

(c|∗v) ◦ (v∗|d)
}

vdom

∣

∣

∣

∣

∗

(c|∗v) ◦ (v∗|d)

]

=

[

(a|∗u)vcod∧v(c|∗v)vdom

∣

∣

∣

∣

∗

(c|∗v)

]

◦

[

(u∗|b)vcod∧v(v∗|d)vdom

∣

∣

∣

∣

∗

(v∗|d)

]

Proof. We prove here only (i) – the proof of (ii) is analogous. We apply
first the functoriality of vertical domains and codomains with respect to
horizontal (co)restrictions followed by the interchange law between vertical
meets and horizontal composition. Finally, we apply the functoriality of
vertical (co)restrictions with respect to horizontal composition.

[

(a|∗u) ◦ (u∗|b)

∣

∣

∣

∣

∗

{

(a|∗u) ◦ (u∗|b)
}

vcod ∧v
{

(c|∗v) ◦ (v∗|d)
}

vdom

]

=

[

(a|∗u) ◦ (u∗|b)

∣

∣

∣

∣

∗

{

(a|∗u)vcod ◦ (u∗|b)vcod
}

∧v
{

(c|∗v)vdom ◦ (v∗|d)vdom
}

]

=

[

(a|∗u) ◦ (u∗|b)

∣

∣

∣

∣

∗

{

(a|∗u)vcod ∧v (c|∗v)vdom
}

◦
{

(u∗|b)vcod ∧v (v∗|d)vdom
}

]

=

[

(a|∗u)

∣

∣

∣

∣

∗

(a|∗u)vcod ∧v (c|∗v)vdom

]

◦

[

(u∗|b)

∣

∣

∣

∣

∗

(u∗|b)vcod ∧v (v∗|d)vdom

]

Note that (a|∗u)vcodhcod = uvcod and (u∗|b)vcodhdom = uvdom so that
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the composite (a|∗u)vcod◦ (u∗|b)vcod is defined. A similar calculation shows
that (c|∗v)vdom ◦ (v∗|d)vdom is defined. This justifies the second equality.

By the definition of meet, (a|∗u)vcod∧v (c|∗v)vdom . (a|∗u)vcod so that
the corestriction

[

(a|∗u)
∣

∣

∗
(a|∗u)vcod ∧v (c|∗v)vdom

]

is defined. Similarly,
[

(u∗|b)
∣

∣

∗
(u∗|b)vcod∧v (v∗|d)vdom

]

is defined and this justifies the third equal-
ity.

The following Proposition is analogous to the previous in the sense that
we are now in the following situation involving the horizontal composite of
horizontal (co)restrictions consisting of vertical (co)restrictions. We can write
these, too, as a four-fold product of double cells in G.

For double cells a, b, c, d ∈ G, define f = avcod∧v cvdom and g = bvcod∧v
dvdom. Consider, then, the following composite in DIS(G) :

Proposition B.3.

(i)

(

[a|∗f ] • [f ∗|c]

∣

∣

∣

∣

∗

{

[a|∗f ] • [f ∗|c]
}

hcod ∧h
{

[b|∗g] • [g∗|d]
}

hdom

)

=

(

[a|∗f ]

∣

∣

∣

∣

∗

[a|∗f ]hcod∧h[b|∗g]hdom

)

•

(

[f ∗|c]

∣

∣

∣

∣

∗

[f ∗|c]hcod∧h[g∗|d]hdom

)

(ii)

(

{

[a|∗f ] • [f ∗|c]
}

hcod ∧h
{

[b|∗g] • [g∗|d]
}

hdom∗

∣

∣

∣

∣

[b|∗g] • [g∗|d]

)

=

(

[a|∗f ]hcod∧h[b|∗g]hdom∗

∣

∣

∣

∣

[b|∗g]

)

•

(

[f ∗|c]hcod∧h[g∗|d]hdom∗

∣

∣

∣

∣

[g∗|d]

)
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Proof. We prove here only (i) – the proof of (ii) is analogous. We apply first
the functoriality of horizontal domains and codomains with respect to vertical
(co)restrictions followed by the interchange law between horizontal meets
and vertical composition. Finally, we apply the functoriality of horizontal
(co)restrictions with respect to vertical composition.

(

[a|∗f ] • [f ∗|c]

∣

∣

∣

∣

∗

{

[a|∗f ] • [f ∗|c]
}

hcod ∧h
{

[b|∗g] • [g∗|d]
}

hdom

)

=

(

[a|∗f ] • [f ∗|c]

∣

∣

∣

∣

∗

{

[a|∗f ]hcod • [f ∗|c]hcod
}

∧h
{

[b|∗g]hdom • [g∗|d]hdom
}

)

=

(

[a|∗f ] • [f ∗|c]

∣

∣

∣

∣

∗

{

[a|∗f ]hcod ∧h [b|∗g]hdom
}

•
{

[f ∗|c]hcod ∧h [g∗|d]hdom
}

)

=

(

[a|∗f ]

∣

∣

∣

∣

∗

[a|∗f ]hcod ∧h [b|∗g]hdom

)

•

(

[f ∗|c]

∣

∣

∣

∣

∗

[f ∗|c]hcod ∧h [g∗|d]hdom

)

The argument justifying the second and third equalities in this proof is ex-
actly analogous to that in the proof of Proposition B.3.

The following proposition follows almost immediately from the axioms of a
double inductive groupoid. These identities will be used to re-express certain
arrows by which we will want to (co)restrict.

Proposition B.4. (i) (a|∗u)vcod∧v(c|∗v)vdom = (avcod∧vcvdom|∗uvcod∧v
vvdom)

(ii) (u∗|b)vcod ∧v (v∗|d)vdom = (uvcod ∧v vvdom∗|bvcod ∧v dvdom)

(iii) [a|∗f ]hcod ∧h [b|g]hdom = [ahcod ∧h bhdom|∗fhcod ∧h ghdom]

(iv) [f ∗|c]hcod ∧h [g∗|d]hdom = [fhcod ∧h ghdom∗|chcod ∧h dhdom]

Proof. We will prove only (i) – the proofs of (ii), (iii) and (iv) are analo-
gous. We apply first the functoriality of vertical domains and codomains
with respect to horizontal (co)restrictions followed by the interchange law
for vertical meets and horizontal (co)restrictions.

(a|∗u)vcod ∧v (c|∗v)vdom = (avcod|∗uvcod) ∧v (cvdom|∗vvdom)

= (avcod ∧v cvdom|∗uvcod ∧v vvdom)
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Proof of Proposition B.1

Consider the semigroup product

(a⊚b)⊙(c⊚d) =
[

a⊚b
∣

∣

∗
(a⊚b)vcod∧v(c⊚d)vdom

]

•
[

(a⊚b)vcod∧v(c⊚d)vdom∗

∣

∣c⊚d].

Note that

a⊚ b = (a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

and
c⊚ d = (c|∗chcod ∧h dhdom) ◦ (chcod ∧h dhdom∗|d)

so that by Proposition B.2 with u = ahcod∧hbhdom and v = chcod∧hdhdom,

(a⊚ b)⊙ (c⊚ d)

=

{[

(a|∗u)

∣

∣

∣

∣

∗

(a|∗u)vcod ∧v (c|∗v)vdom

]

◦

[

(u∗|b)

∣

∣

∣

∣

∗

(u∗|b)vcod ∧v (v∗|d)vdom

]}

•

{[

(a|∗u)vcod ∧v (c|∗v)vdom∗

∣

∣

∣

∣

(c|∗v)

]

◦

[

(u∗|b)vcod ∧v (v∗|d)vdom∗

∣

∣

∣

∣

(v∗|d)

]}

.

Using the interchange law of double cells of a double inductive groupoid, we
have

(a⊚ b)⊙ (c⊚ d)

=

{[

(a|∗u)

∣

∣

∣

∣

∗

(a|∗u)vcod ∧v (c|∗v)vdom

]

•

[

(a|∗u)vcod ∧v (c|∗v)vdom∗

∣

∣

∣

∣

(c|∗v)

]}

◦

{[

(u∗|b)

∣

∣

∣

∣

∗

(u∗|b)vcod ∧v (v∗|d)vdom

]

•

[

(u∗|b)vcod ∧v (v∗|d)vdom∗

∣

∣

∣

∣

(v∗|d)

]}

.

Applying Propositions B.4(i) and B.4(ii), we have

(a⊚ b)⊙ (c⊚ d)

=

{[

(a|∗u)

∣

∣

∣

∣

∗

(avcod ∧v cvdom|∗uvcod ∧v vvdom)

]

•

[

(avcod ∧v cvdom|∗uvcod ∧v vvdom)∗

∣

∣

∣

∣

(c|∗v)

]}

◦

{[

(u∗|b)

∣

∣

∣

∣

∗

(uvcod ∧v vvdom∗|bvcod ∧v dvdom)

]

•

[

(uvcod ∧v vvdom∗|bvcod ∧v dvdom)∗

∣

∣

∣

∣

(v∗|d)

]}

.

Using Property (vi) from Definition 4 of double inductive groupoids, we have

(a⊚ b)⊙ (c⊚ d)

=

{(

[a|∗avcod ∧v cvdom]

∣

∣

∣

∣

∗

[u|∗uvcod ∧v vvdom]

)

•

(

[avcod ∧v cvdom∗|c]

∣

∣

∣

∣

∗

[uvcod ∧v vvdom∗|v]

)}

◦

{(

[u|∗uvcod ∧v vvdom]∗

∣

∣

∣

∣

[b|∗bvcod ∧v dvdom]

)

•

(

[uvcod ∧v vvdom∗|v]∗

∣

∣

∣

∣

[bvcod ∧v dvdom∗|d]

)}

.
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Note that, by functoriality of (co)domains, commutativity of (co)domains
and interchange law of vertical and horizontal meets, we have

[u|∗uvcod ∧v vvdom] = [u|∗(ahcod ∧h bhdom)vcod ∧v (chcod ∧h dhdom)vdom]

= [u|∗(avcodhcod ∧h bvcodhdom) ∧v (cvdomhcod ∧h dvdomhdom)]

= [u|∗(avcodhcod ∧v cvdomhcod) ∧h (bvcodhdom ∧v dvdomhdom)]

= [ahcod ∧h bhdom|∗(avcod ∧v cvdom)hcod ∧h (bvcod ∧v dvdom)hdom].

We leave the similar calculations involving the other three (co)restrictees
to the reader. Let f = avcod ∧v cvdom and g = bvcod ∧v dvdom. Then by
Propositions B.4(iii) and B.4(iv), we have

(a⊚ b)⊙ (c⊚ d)

=

{(

[a|∗f ]

∣

∣

∣

∣

∗

[a|∗f ]hcod ∧h [b|∗g]hdom

)

•

(

[f ∗|c]

∣

∣

∣

∣

∗

[f ∗|c]hcod ∧h [g∗|d]hdom

)}

◦

{(

[a|∗f ]hcod ∧h [b|∗g]hdom∗

∣

∣

∣

∣

[b|∗g]

)

•

(

[f ∗|c]hcod ∧h [g∗|d]hdom∗

∣

∣

∣

∣

[g∗|d]

)}

.

By Proposition B.3,

(a⊚ b)⊙ (c⊚ d) =

(

[a|∗f ] • [f ∗|c]

∣

∣

∣

∣

∗

{

[a|∗f ] • [f ∗|c]
}

hcod ∧h
{

[b|∗g] • [g∗|d]
}

hdom

)

◦

(

{

[a|∗f ] • [f ∗|c]
}

hcod ∧h
{

[b|∗g] • [g∗|d]
}

hdom∗

∣

∣

∣

∣

[b|∗g] • [g∗|d]

)

.

Recall that

a⊙ c = [a|∗avcod ∧v cvdom] • [avcod ∧v cvdom∗c]

and
b⊙ d = [b|∗bvcod ∧v cvdom] • [bvcod ∧v cvdom∗|d].

By our choice of f and g, then,

(a⊚ b)⊙ (c⊚ d)

=

(

a⊙ c

∣

∣

∣

∣

∗

{

a⊙ c
}

hcod ∧h
{

b⊙ d
}

hdom

)

◦

(

{

a⊙ c
}

hcod ∧h
{

b⊙ d
}

hdom∗

∣

∣

∣

∣

b⊙ g

)

= (a⊙ c)⊚ (b⊙ d).
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