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Abstract

In this paper, we extend Fibonacci’s method for computing Pythagorean
triples of the form (x,y,y + 1) to compute Pythagorean triples of the
form (z,y,y + ¢) in three ways. Each of these three constructions
exploits a certain relationship between x and ¢ which must be true
of any Pythagorean triple. Constructions 1 and 2 provide new proofs
of already known formulae, whereas Construction 3 provides a novel
method of computing Pythagorean triples.

1 Introduction

A Pythagorean triple is a triple (x,y, z) of natural numbers satisfying

2+ y2 = 22
Fibonacci’s method [7] of computing Pythagorean triples is based on the
series expansion of a perfect square and is briefly summarized: the square of y
is the sum of the first y odd numbers (y? = ¥ (2i—1)). Therefore, addition
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of the next odd number 2y + 1 results in the next perfect square (y + 1)* =
Zf:ll(Qz — 1). Hence, it is easy to generate triples of the form (x,y,y + 1)
since 72 = (y + 1)* — y? = 2y + 1, leading to y = x22_1. Fibonacci’s method
was recently studied by Amato [1] in the special case that y is odd. Herein,
we extend Fibonacci’s method to the general triple (z,y,2) = (x,y,y + {)
(Fibonacci’s method corresponds to the case £ = 1). We can rewrite the
Pythagorean equation as

=2 -yt = () e —y) = (W + O +y)(y+0) —y) =2y + L.
From 2? = (2y + ()¢, we immediately derive a proposition.
Proposition 1.1. If (x,y,y + {) is a Pythagorean triple, then

1. x>/,

2. x =/ (mod 2) —i.e., x =+ 2p for somep € N,

3. %f > /{, and

4. fo ={ (mod 2).

O

This proposition is used to construct natural solutions to the Pythagorean
equation of the form (z,y,y + ¢) via three constructions:

1. The (a, b, c) method depends on factoring ¢.
2. The (¢, p) method depends on = having the same parity as ¢.
3. The (¢, q) method depends on x?/¢ having the same parity as /.

Constructions 1 and 2 are shown to provide new proofs of techniques
known already to be complete, whereas Construction 3 provides a novel ap-
proach to computing Pythagorean triples.

2 Construction 1: The (a,b,c) Method

Suppose that (z,y,z) = (z,y,y + £) is a Pythagorean triple. The (a,b, c)
method generates (z,y,2) by writing ¢ = a?b as a product of paired and
unpaired factors. Since z? is a perfect square and

22 = 2y + 00 = (2y + £)a’b,
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2y + ¢ must have b as a factor and 2yT+Z 2

2y + ¢ = bc?. This factorization immediately gives

= /(2y + ) = \/(bc?)(a2b) = abc

and
b=l b —a’h (P —a?)b

2 2 N 2

Y

Finally, we complete the Pythagorean triple by computing

2 _ 92 2 2
z:y+£:(c a)b+a2b:(c +a)b

2 2

The Pythagorean triples are expressed as

r0.2) = (ae, E 5, E2 )

This argument culminates in our first construction.

Construction 1. Suppose { = a*b and (b, c) satisfies ¢ > a and either

1. b is even, or
2. a=c (mod 2).

Then

(2,y,2) = <abc, (¢ —a)b (¢ + a2)b>

2 ’ 2

15 a Pythagorean triple.

841

= ¢* is a perfect square; that is,

Construction 1 generates any multiple of the primitive triangles given
by Euclid’s formula [4, Book X, Lemma 1], which we would call the (a,c)
method. Euclid’s (a, ¢) method is known to be complete for primitives and is
non-repeating (see [5, Appendix B] or [9, Theorem 2]). Our (a, b, ¢) method
is complete as it generates all b-multiples of the primitives. This provides
a new proof that Fuclid’s formula can be extended to all triples, which is

already known in the literature [6, 3].
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3 Construction 2: The (/,p) Method

Suppose that (z,y,2) = (x,y,y + £) is a Pythagorean triple. The (¢, p)
method generates (z,y, z) by explicitly exploiting the fact that = must have
the same parity as . That is, # = ¢ + 2p for some natural p and 2?2 =
(% 4 40p + 4p?. Solving the equation

2y + )0 = 2* = (0 + 2p)* = (2 + 4pl + 4p*

for y gives
oy X
and o2
z:y—|—€:€+2p+%.

This argument culminates in our second construction.

Construction 2. Given ¢, suppose that p € N satisfies % € N. Then

2p? 2p?
(x,y,2) = <€+2p,2p+%,£+2p+%)

is a Pythagorean triple.
Proposition 3.1. Construction 2 is complete.

Proof. Suppose that (z,y,2) = (z,y,y+{) is any Pythagorean triple and set

z—0

p = %=, which is positive by Proposition 1.1(1). By Proposition 1.1(2), z
and ¢ have the same parity; that is, the difference x — ¢ is even and p = :(:56 is
natural. This choice of p therefore generates the Pythagorean triple (x,y, 2)

as described in Construction 2 since x = ¢ + 2p. O

Relationship to Dickson’s Solution Dickson [2] generated Pythagorean
triples for any pair (¢, m) € N by the formula

(z,y,7) = (z +V2ml,m -+ V2ml, 1+ m + \/2m£>

When substituting m = %, our natural solutions then coincide with Dick-

son’s. Pythagorean triples using Dickson’s formula are irrational except when
2ml is a perfect square. Our equation provides only rational solutions; nat-
ural solutions are obtained when % is a natural number (i.e., 2p? is a nat-
ural multiple of ¢). This provides, then, an alternative proof that Dickson’s

method is complete than to what is currently found in the literature [§].
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4 Construction 3: The (/,q) Method

Suppose that (z,y, z) is a Pythagorean triple. The (¢, q) method depends

on explicitly constraining x2/¢ to the same parity as £. By Proposition 1.1,

x and ¢ have the same parity. Therefore, x = ¢ + 2p for some p € N and

2? = (¢ + 2p)?. Further, 2%/¢ and ¢ have the same parity. This means that

for odd ¢, x* = (2¢ — 1)¢ for some ¢, and for even ¢, 2> = 2¢/ for some q.
Therefore, for odd ¢, the equation 2% — 2% = 0 becomes

(C+2p)* —(2¢— V)0 =4p* +4pl +0* — (2q— 1) =0

and has solutions

—40 + /1602 — 16(L2 — (2 — 1)0)
p =
8

0+ /= (= (2¢ — 1)0)

2
—l++/(2¢ —1)¢
5 :

All g > % such that (2¢ — 1)¢ is a perfect square yield triples

5 1T

(2,9,2) = ( RN g‘—l)

Analogously, for even ¢, the equation
(€ +2p)* —2q0 = 4p* +4pl + (* — 2¢0 = 0

has solutions

| A4 \1602 —16(02 —2q0)  —L+ /02 — (2 —2q)  —(+\/2q0

8 2 2

p

All g > 5 such that 2¢f is a perfect square yield triples

l 14
(l’,y,Z)—( 2q€7q_§7q_'_§)

This argument culminates in our third construction.

41

Construction 3. Given ¢, suppose that q € N satisfies ¢ > == and either
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1. 2% = (2¢— )0 if £ is odd, or
2. 2% = 2ql if { is even.
Then
(z,y,2) = ( (2¢—1)l,q - HTl’qu £—T1)
s a Pythagorean triple if ¢ is odd and

14 14
(l’,y,Z)—( 2q£7q_§7q_'_§)

is a Pythagorean triple if { is even.

Corollary 4.1. Given £, there is a family of Pythagorean triples (x,vy, z)
indexed by m > { satisfying m = ¢ (mod 2).

Proof. Let

2q (=0 (mod 2)
m =
2g—1 £=1 (mod 2)

Then, since m = ¢+ 2y and by Construction 3, there is a Pythagorean triple

m—/{ m—|—£)

(Zlf,y,Z) = ( mEaTaT

O

Note When m and /¢ are both perfect squares, the technique outlined in
the argument of Construction 3 yields Euclid’s solution [4].

Proposition 4.2. Construction 3 is complete.

Proof. Suppose that (x,y, z) = (z,y,y + ¢) is any Pythagorean triple. If ¢ is

even, set
> (2u+00  2y+1

1= 50~ 0 2

which is natural since 2y + ¢ is even. If £ is odd, set

Pl 2+ O+ 2940+ 1
T T e T T
£+1

In both cases, ¢ > ==, ¢ satisfies the parity-appropriate condition (1) or

(2) in Construction 3. Therefore, the Pythagorean triple (z,y,z) can be
constructed from gq. O
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