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Abstract

A double semigroup is a set equipped with two associative binary operations satisfying

the middle-four interchange law. A double inverse semigroup is a double semigroup

in which both operations are inverse semigroup operations. It is shown by Kock [9]

that all double inverse semigroups must be commutative. In this thesis, we define

the notion of a double inductive groupoid which admits both a construction of dou-

ble inverse semigroups given any double inductive groupoid, and vice-versa. These

constructions are functorial and induce an isomorphism of categories between the

category of double inductive groupoids with inductive functors and double inverse

semigroups with double semigroup homomorphisms. By a further investigation of

double inverse semigroups, we are able to show that the two operations of any double

inverse semigroups must coincide and thus double inverse semigroups are commuta-

tive inverse semigroups.
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List of Abbreviations and Symbols Used

Notation Description

C Denotes a category.

C0 Denotes the class of objects in a category C.

C1 Denotes the class of morphisms in a category C.

Set Denotes the category of sets with set functions.

Cat Denotes the category of small categories with functors.

IS Denotes the category of inverse semigroups with semigroup homomor-

phisms.

IG Denotes the category of inductive groupoids with inductive functors.

DIS Denotes the category of double inverse semigroups with double semi-

group homomorphisms.

DIG Denotes the category of double inductive groupoids with double induc-

tive functors.

AbPSMS Denotes the category of presheaves of Abelian groups on meet-

semilattices with presheaf morphisms.

C1 ×C0 C1 If C0 and C1 are objects in a category with arrows

C1

s
**

t
44 C0 e

// C1 ,

denotes the object of composable pairs of arrows and is the pullback

defined by the square

C1 ×C0 C1
π2 //

π1
��

C1

s

��

C1 t
// C0

v



Notation Description

D Denotes a double category.

Ver(D) Denotes the set of vertical arrows in a double category D.

Hor(D) Denotes the set of horizontal arrows in a double category D.

Dbl(D) Denotes the set of double cells in a double category D.

sdom Denotes the domain of s.

scod Denotes the codomain of s.

ahdom Denotes the horizontal domain of a.

avdom Denotes the vertical domain of a.

avcod Denotes the vertical codomain of a.

ahcod Denotes the horizontal codomain of a.

S(�,}) Denotes a double semigroup S with operations � and }.

G Denotes a double inductive groupoid.

(e∗|a) Denotes the horizontal restriction of a by e.

[e∗|a] Denotes the vertical restriction of a by e.

(a|∗e) Denotes the horizontal corestriction of a by e.

[a|∗e] Denotes the vertical corestriction of a by e.

E(S,�) Denotes the set of idempotents of a semigroup S with respect to �.
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Chapter 1

Introduction

The term “semigroup” to mean as we do – a set equipped with a single associative

binary operation – is likely to have first been used in 1904, by French mathematician

Séguier in [4], to describe a relaxation of group after noting several examples of

group-like objects that didn’t have all the properties of groups. Semigroup theory is

interesting in the sense that it is deceivingly complex. A definition so innocent as

a set being equipped with an associative binary operation turns out to have many

non-trivial consequences due to a certain subtlety in the theory. For example, it is

common knowledge there is only one group of orders 1, 2, 3 and 5 and there are only

two of order 4. As a consequence of the very few conditions on semigroups, however,

there exist 1, 5, 18, 126 and 1160 semigroups of order 1,2,3,4 and 5, respectively. The

richness of the theory admitted some very famous and comprehensive works on the

subject, including textbooks by Clifford and Preston ([2] and [3]) and Howie ([8]).

A semigroup S is said to be inverse if every element has a unique semigroup

inverse. That is, for every s ∈ S, there is a unique s′ ∈ S such that both ss′s = s

and s′ss′ = s′. An element s ∈ S is said to be idempotent if ss = s. In a group,

it is known that the only idempotent is the group identity. Remarkably, though

the semigroup inverse does not superficially look the same as a group inverse, it

can be proven that groups are exactly inverse semigroups with only one idempotent.

Though inverse semigroups and groups share this relationship, the theory of inverse

semigroups inherits its complexity and richness from that of semigroups. It is exactly

for this reason that Lawson’s book [11], dedicated to the theory of inverse semigroups,

was written.

Recall that any group G is isomorphic to some subgroup of its permutation group

SG. Another stark similarity that inverse semigroups have to groups is that there is

1
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an analogous theorem, namely the Preston-Wagner theorem, that states that every

inverse semigroup X is isomorphic to some subsemigroup of its semigroup of partial

isomorphisms, CX .

1.1 Double Semigroups

In his paper, Kock [9] introduced the notion of a double semigroup. A double semi-

group (S,},�) is a set S equipped with two associative binary operations � and }

such that, for all a, b, c, d ∈ S, the following law, called the middle-four interchange,

holds:

(a} b)� (c} d) = (a� c)} (b� d)

Many examples of double semigroups exist. The most obvious example is a set

equipped with the same two commutative semigroup operations. An additional ex-

ample is a set equipped with left projection and right projection. Both left and right

projection are associative and they satisfy the middle-four interchange. It is the case

that one can combine any semigroup operation with right projection to make a double

semigroup.

Kock notices that the requirement that the semigroup satisfies the middle-four

interchange law implies some interesting commutativity properties of certain prod-

ucts. Kock proves that there exist classes of not-necessarily-commutative semigroup

operations on a given set such that when two of these semigroups are compatible in

the sense that they admit a double semigroup, said double semigroup is necessarily

commutative.

A semigroup S is said to be cancellative if, for all a, b, c ∈ S, both ac = bc

implies a = b and ca = cb implies a = b. A double cancellative semigroup is a double

semigroup in which both of its operations are cancellative. It is established by Kock

that all double cancellative semigroups are commutative (n the sense that both of its

operations are commutative).

A double inverse semigroup is a double semigroup in which both operations are

inverse semigroup operations. Kock observes that all double inverse semigroups are
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commutative. This observation is extremely interesting, especially since it comes

with (in the comments of the LATEX source code of his paper) the musing that Kock

doesn’t actually have a non-trivial (i.e., both operations are not the same) example

of a double inverse semigroup.

Thus starts our work in the subject. In an effort to find one, hand verification

of all potential candidates up to order 3 was performed with no luck. This was

done by generating a list of all commutative inverse semigroups up to order 3 using

GAP [7] and then checking if any pair of them satisfy the middle-four equation. As

stated above, however, the number of semigroups of a given order increases at an

unmanageable rate for hand calculation.

1.2 Existence of Double Inverse Semigroups

Having failed to calculate a small example of a double inverse semigroup, our curiosity

is officially piqued. Attempts to prove that non-trivial (e.g., we do not want that both

operations are the same) double inverse semigroups exist fail to yield any results. Our

attention then turns to a previously known construction of inverse semigroups due to

Lawson [11]. Lawson successfully shows that there is an isomorphism of categories

between the category of inverse semigroups with semigroup homomorphism and the

category of what are called inductive groupoids – ordered groupoids with additional

structure – and inductive functors. An ordered groupoid is a groupoid equipped with

a partial order on its arrows that satisfies some natural conditions and also admits

unique restrictions and corestrictions on arrows. An inductive groupoid is an ordered

groupoid whose set of objects form a meet-semilattice.

Double categories, categories internal to Cat, were first introduced by Ehresmann

in [6]. More specifically, he introduced double groupoids as a means of studying

differential geometry. Double groupoids have also become interesting to study for

other reasons. For example, Brown [1] started a web article to discuss the use of

double groupoids to study higher dimensional group theory. We will be using a certain

class of groupoids – double inductive groupoids – to study higher (two) dimensional
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inverse semigroup theory.

In an attempt to derive a similar isomorphism between the category of double

inverse semigroups and double semigroup homomorphisms and the category of double

inductive groupoids and double inductive functors, we first generalise the definition

of an inductive groupoid to a double categorical context. This requires an inductive

groupoid structure on the double cells in both the vertical and horizontal directions

such that the two structures are functorial with respect to each other. That is, each

of the vertical and horizontal structures interact by middle-four.

These double inductive groupoids introduce two inductive groupoid structures –

one vertical and one horizontal – such that the horizontal and vertical partial orders,

restrictions, corestrictions, domains, codomain and meets commute with each other,

either in the sense that one distributes over the others or they satisfy middle-four.

It is indeed through these double inductive groupoids that one derives the desired

isomorphism between these categories. Two constructions that form the crux of this

isomorphism – one for making a double inverse semigroup out of a double inductive

groupoid and vice-versa – are detailed in this thesis.

Using this isomorphism, one begins to wonder exactly what structure double in-

ductive groupoids and double inverse semigroups have. Our first remark is the im-

plication that the two meet semilattice structures – that coming from the vertical

idempotents and that coming from the horizontal idempotents – coincide on the ob-

jects of a double groupoid. It also follows from the commutativity of double inverse

semigroups that any double cell in a double inductive groupoid must have its verti-

cal domain and codomain be the same horizontal arrow, its horizontal domain and

codomain the same vertical arrow and each of its four object corners be equal. This

induces a natural collection of double inverse subsemigroups indexed by the objects

of the double inductive groupoid. These double inverse subsemigroups are shown to

be Abelian groups. It will then follow that arbitrary double inverse semigroups are

presheaves of Abelian groups over meet-semilattices and thus are exactly commutative

inverse semigroups.



Chapter 2

Preliminaries

2.1 Basic Category Theory

Definition 2.1.1. A category C contains the following data:

– A collection of objects, denoted Obj(C).

– For any two objects a, b ∈ Obj(C), a collection C(a, b) of arrows. We denote an

arrow f ∈ C(a, b) as f : a→ b or a
f
//b. These collections of arrows come together

with:

• For any three objects a, b, c ∈ Obj(C), an associative composition function

◦ : C(a, b)×C(b, c)→ C(a, c).

• For any object a ∈ Obj(C), an identity arrow 1a : a → a such that, for any

arrow f : a→ b in C,

f ◦ 1b = f = 1a ◦ f.

Whenever the context is such that no confusion will arise, we denote the composition

f ◦ g using the concatenation fg. �

Note. It is of value to note that we use postfix notation for composition of arrows.

That is, we write a statement such as fg to mean “f and then g”.

Example 2.1.2. We call 1 the category with one object, call it ∗, and one arrow,

1∗. N

Having defined a category, we recall the familiar notion of a product of categories.

This is a well known construction that will be of great use later in the thesis.

5
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Definition 2.1.3. Let C and D be categories. Define the category product of C and

D, denoted C×D, to be the category containing the following data:

– The objects of C ×D are ordered pairs (c, d), where c is an object in C and d is

an object of D.

– The arrows of C×D are ordered pairs (f, g), where f is an arrow in C and g is an

arrow in D.

– The composite of two arrows (f, g) : (c, d)→ (c′, d′) and (f ′, g′) : (c′, d′)→ (c′′, d′′)

is defined by (f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′) : (c, c′′) → (d, d′′). This composition

is clearly associative, since it is the pairwise composition of arrows inside of two

categories and thus it is coordinate-wise associative.

– For any object (c, d) in C × D, define 1(c,d) = (1c, 1d). This acts as a unit for

composition since, for any arrow (f, g) : (c, d)→ (c′, d′), we have

(f, g) ◦ 1(c′,d′) = (f, g) ◦ (1c′ , 1d′) = (f ◦ 1c′ , g ◦ 1d′) = (f, g)

and

1(c,d)(f, g) = (1c, 1d) ◦ (f, g) = (1c ◦ f, 1d ◦ g) = (f, g). �

Definition 2.1.4. Let C and D be categories. A functor F : C→ D consists of the

following data:

– An object function F : Obj(C)→ Obj(D).

– For any a, b ∈ Obj(C), an arrow function F : C(a, b)→ D(aF, bF ) such that

• For any composable pair of arrows f, g in C, (f ◦ g)F = fF ◦ gF.

• For any object a ∈ Obj(C), 1aF = 1aF . �

Note. We again draw attention to the use of postfix notation for the evaluation of

F on both arrows and objects, being consistent with our use of this notation for

composition.
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Definition 2.1.5. Let C, D and E be categories and suppose we have functors

C F //D G //E . We naturally define the composite functor F ◦ G : C → E as

the functor whose object function is the composite F ◦ G : Obj(C) → Obj(E) and

whose arrow function, for any a, b ∈ Obj(C), is the composite F ◦ G : C(a, b) →

E(aFG, bFG). �

Example 2.1.6. Let C be any category. We define the identity functor on C, denoted

1C, to be the functor such that, for any object a ∈ C, a 1C = a and, for any arrow

f : a → b in C, f1C = f. This clearly preserves identities and composition and is

thus functorial. N

Definition 2.1.7. Let C be a category. An arrow f : a → b in C is called an

isomorphism whenever there exists an arrow g : b → a in C such that fg = 1a and

gf = 1b. If such a pair of arrows between two objects a and b in C exist, we say

that a and b are isomorphic objects, denoted a ∼= b. Let D be a category. A functor

F : C → D is called an isomorphism of categories whenever there exists a functor

G : D → C such that FG = 1C and GF = 1D. If an isomorphism exists between

the categories C and D, we say that C and D are isomorphic categories, denoted

C ∼= D. �

Example 2.1.8. Let C be a category. Then C × 1 ∼= C ∼= 1 × C. We will only

show that C× 1 ∼= C. That C ∼= 1×C follows analogously. We begin by defining a

functor F : C× 1→ C : For any object a ∈ C, we define aF = (a, ∗). For any arrow

f : a → b in C, we define fF = (f, 1∗). This is functorial since, for any composable

pair of arrows f and g in C, we have that

(f ◦ g)F = (f ◦ g, 1∗) = (f ◦ g, 1∗ ◦ 1∗) = (f, 1∗) ◦ (g, 1∗) = fF ◦ gF

and, for any object a in C, we have that

1aF = (1a, 1∗) = 1(a,∗).

We claim that this is an isomorphism of categories. To show this we define another
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functor G : C×1→ 1 : For any object (a, ∗) ∈ C×1, we define (a, ∗)G = a. For any

arrow (f, 1∗) : (a, ∗)→ (b, ∗) in C× 1, we define (f, 1∗)G = f. This, too, is functorial

since, for any composable pair of arrows (f, 1∗) and (g, 1∗) in C× 1, we have that

[(f, 1∗) ◦ (g, 1∗)]G = (f ◦ g, 1∗ ◦ 1∗)G = (f ◦ g, 1∗)G = f ◦ g

and, for any object (a, ∗) in C× 1, we have that

(1(a,∗)G = (1a, 1∗)G = 1a = 1(a,∗)G.

Having established functoriality of G, we now check that it satisfies the composition

requirements:

1. On any object a ∈ C, we have aFG = (a, ∗)G = a. For any arrow f : a→ b in C,

we have that fFG = (f, 1∗)G = f ; we have established that FG = idC.

2. On any object (a, ∗) of C × 1, we have (a, ∗)GF = aF = (a, ∗). For any arrow

(f, 1∗) : (a, ∗) → (b, ∗) in C× 1, we have that (f, 1∗)GF = fF = (f, 1∗); we have

established that GF = 1C×1.

Having shown that F is indeed an isomorphism of categories, we can conclude that

C× 1 ∼= C. N

2.2 Semigroups

Definition 2.2.1. A semigroup (S,�) is a set S equipped with an associative binary

operation, �. �

Definition 2.2.2. Two elements x and y in a semigroup S are said to be inverse

if x = xyx and y = yxy. A semigroup is said to be an inverse semigroup if every

element has a unique inverse. �

We first remind the reader of an equivalent definition, found in [11], of inverse

semigroups:
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Lemma 2.2.3. A semigroup S is inverse if and only if every element has at least

one inverse and all idempotents commute.

Notation. If S is a semigroup, we denote the set of idempotent elements in S as

E(S) = {s ∈ S|s2 = s}.

Definition 2.2.4. If S is a semigroup, we define the natural order on S with the

following relation: For all s, t ∈ S, s ≤ t if and only if s = et for some e ∈ E(S). That

is, s ≤ t if we can factor out an idempotent. �

Notation. If (S,�) is an inverse semigroup and a ∈ S, we denote the semigroup

inverse of a by a�.

Proposition 2.2.5. Let (S,�) be an inverse semigroup. Then s�s, ss� ∈ E(S) for

all s ∈ S.

Proof. First, we see that (s�s)(s�s) = (s�ss�)s = s�s and thus s�s is an idempotent.

Similarly, (ss�)(ss�) = ss�.

By Lemma 2.2.3, the idempotents of an inverse semigroup commute. Knowing

this, we can prove the following:

Proposition 2.2.6. Let S be an inverse semigroup. Then (ab)� = b�a� for all

a, b ∈ S.

Proof. We first note that (ab)(b�a�)(ab) = a(bb�)(a�a)b = a(a�a)(b�b)b = ab, by

the commutativity of idempotents. Similarly, we find that (b�a�)(ab)(b�a�) = b�a�.

These two equations tell us that the inverse of ab is b�a�, or that (ab)� = b�a�.



Chapter 3

Double Semigroups

This chapter will introduce the notion of double semigroups. We will then explore

several known results about double semigroups that will become useful in later chap-

ters when we carry out certain constructions. In the final section of this chapter, we

describe the main motivation of this thesis: the characterisation of a certain class of

double semigroups.

3.1 Double Semigroups

Definition 3.1.1. A set D equipped with two associative binary operations, � and

}, is called a double semigroup if it satisfies the middle-four interchange law. That

is, for any a, b, c, d ∈ D,

(a� b)} (c� d) = (a} c)� (b} d). �

Double semigroups appear at first to possibly be numerous. The restriction that

the operations must satisfy the middle-four law, however, turns out to restrict the

examples significantly. A first example is made:

Example 3.1.2. Any set D can be made into a double semigroup by equipping it

with left and right projection. That is, (D,�,}) is a double semigroup where, for

all a, b ∈ D, a� b = a and a} b = b. These operations are associative since, for any

a, b, c ∈ D,

a� (b� c) = a� b = a = a� c = (a� b)� c

and

a} (b} c) = a} c = c = b} c = (a} b)} c.

10
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It can also be seen that � and } satisfy, for any a, b, c, d ∈ D, the interchange law:

(a} b)� (c} d) = b� d = b = a} b = (a� c)} (b� d). N

In a further attempt to create an example, we try to use group operations as our

semigroup operations:

Example 3.1.3. Let G be a set of order 4 equipped with the group operations � and

} from Z4 = 〈a|a4 = 1〉 and V4 = 〈a, b|a2 = b2 = (ab)2 = 1〉, respectively. G is not

a double semigroup. It follows from the fact that groups are monoid structures that

the units of the group structures, both denoted hereafter as 1, coincide (this follows

from Theorem 3.1.4 below). Consider any non-identity element 1 6= a ∈ G such that

a is of order not equal to 2 with respect to Z4. Checking the interchange law, we have

(a� 1)} (1� a) = a} a = 1. However, (a} 1)� (1} a) = a� a 6= 1; the interchange

law is not satisfied. N

That two different group operations on the same set do not induce a double

semigroup is no accident. There exists, in fact, a stronger result about what monoid

structures induce double semigroups which follows directly as a corollary from the

well known Eckmann-Hilton argument. The proof of the following theorem is an

adaptation of the proof given by [5].

Theorem 3.1.4 (Eckmann-Hilton). Let X be a set equipped with two unital binary

operations � and }. If, for all a, b, c, d ∈ X,

(a� b)} (c� d) = (a} c)� (b} d),

then

(i) � and } share the same unit,

(ii) � = },

(iii) � and } are commutative and
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(iv) � and } are associative.

Proof. To prove (i), we first need to recall that the unit of a unital binary operation

is unique. We denote the units for � and } as 1� and 1}, respectively. Using the

interchange law, then, we see that

1� = 1� � 1� = (1� } 1})� (1} } 1�) = (1� � 1})} (1} � 1�) = 1} } 1} = 1}.

By (i), it is unambiguous, then, that we choose to hereafter denote both units as

1.

To prove (ii), we use the interchange law to show that, for all a, b ∈ X,

a� b = (1} a)� (1} b) = (1� 1)} (a} b) = 1} (a} b) = a} b.

By (ii), it is unambiguous, then, that we choose to hereafter denote both a � b

and a} b as simply ab, for any elements a, b ∈ X.

To prove (iii), we use the interchange law to see that, for all a, b ∈ X,

ab = (1a)(b1) = (1b)(a1) = ba.

To prove (iv), we use the interchange law to see that, for all a, b, c ∈ X,

a(bc) = (a1)(bc) = (ab)(1c) = (ab)c.

Corollary 3.1.5. Let (D,�) and (D,}) be monoids. (D,�,}) is a double semigroup

if and only if � = } and both � and } are commutative.

3.2 Commutativity in Double Semigroups

In his paper, Kock [9] investigates some consequences of the middle-four interchange

of double semigroups. In particular, he notices that they exhibit some commutativity
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properties. The theorems in this section are due to Kock and the discussion and

proofs very closely follow his. We begin by making some notational choices:

Notation. If (D,�,}) is a double semigroup, we can assign the operations each

their own respective direction. That is, we can consider } as a horizontal operation

and � as a vertical operation. This is useful because it provides an easily interpreted

visualisation of products in D :

• For any a, b ∈ D, we represent the product a} b horizontally as .

• For any a, b ∈ D, we represent the product a� b vertically as .

It is now noted that we can interpret products such as

without any ambiguity because the middle four interchange law implies equality in

choice of operational order (it does not matter whether we evaluate the horizontal

product of the two vertical products or vice versa).

Because both � and } are associative operations, we can rewrite large products

of elements in D in several ways. If, for example, we consider the product (a} b)�

(c}d}e), we can rewrite this as either (a} b)� ((c}d)}e) or (a} b)� (c} (d}e)).

Visually, one has that

As an immediate consequence of the definition of a double semigroup, Kock es-

tablishes the following commutativity result:

Theorem 3.2.1. For any sixteen elements a, b, ... in any double semigroup, this equa-

tion holds:
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(The empty boxes represent fourteen nameless elements, that are the same on each

side of the equation, and in the same order.)

Proof. The associativity of the two operations allows us to shift elements along any

row or column independently, as we described above. It is not true in general that one

may slide elements in a general array, but middle-four interchange tells us that we can

multiply certain 4-tuples of elements in any order (vertical first and the horizontal,

and vice-versa). In an array such as above, this condition allows us to slide the

elements in either direction as long as there is some “cushion” on the outside. This

cushion is in fact the outer two elements in the middle-four-shaped 4-tuple that allows

us to swap the middle two. Using these facts, we can perform the following operations

while fixing the border:

and the result is proved. It is of interest to note that, as long as we have that cushion,

we can permute elements in any 2× 2 array, as demonstrated by the first eight steps

above.

By Eckmann-Hilton, we know that double groups are not at all interesting (they
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are simply Abelian groups). A natural question, then, is to ask how many group prop-

erties can we add to semigroups without having the corresponding double semigroups

having their operations necessarily the same (and thus reduce to Abelian groups).

We consider the following class of double semigroups:

Definition 3.2.2. A semigroup S is said to be right cancellative if, for any a, b, c ∈ S,

ac = bc implies a = b. S is said to be left cancellative if, for any a, b, c ∈ S, ca = cb

implies a = b. We say that S is cancellative if S is both left cancellative and right

cancellative. A double semigroup is said to be cancellative if both of its operations

are. �

Though not proved in his paper, Kock states the following direct result of The-

orem 3.2.1 (we provide the very simple proof only to help discussion following this

corollary):

Corollary 3.2.3. A cancellative double semigroup D is commutative.

Proof. Suppose that a, b ∈ D. Let c ∈ D be any element of D. Then by Theorem

3.2.1,

and thus, by the definition of cancellative,

It is an interesting observation that in the above proof, instead of using Kock’s

commutativity theorem, we could have used the same method employed in his proof

of the commutativity theorem to permute the middle four elements such that the

vertical product, rather than the horizontal product, of a and b would be found. You

could then cancel the cs in exactly the same manner as above to show that the two

operations would be the same:



16

Proposition 3.2.4. If (S,�,}) is a double cancellative semigroup, then � = }.

Proof (Selinger). Let a, b ∈ S and consider the following sequence of tile slidings,

where each blank square is some nameless semigroup element:

We can now apply cancellation in both directions to achieve the desired result.

It is at first curious that a cancellative double semigroup would require two equal

and commutative binary operations. The curiosity fades, however, when one recalls

the well-established fact that all finite cancellative semigroups are actually groups.

That is, if D is a finite double cancellative semigroup, we actually have an Abelian

group by Theorem 3.1.4. If, however, D is not finite, we can still say that its two

binary operations must be the same and commutative. Even without the result

that double cancellative semigroups are always Abelian groups, their complete and

immediate characterisation is cause for some disappointment. We will relax group

properties in a different way, then, and consider the following class of double semi-

groups:

Definition 3.2.5. A double semigroup is called a double inverse semigroup if both

of its operations are inverse semigroup operations. �

Before proving that all double inverse semigroups are commutative, we require

the following lemma which is due to Kock:

Lemma 3.2.6. Let S be a double inverse semigroup. Then the inverse operations of

S commute. That is, a�} = a}� for all a ∈ S.



17

Proof. To prove this result, we first note that both

and

These two equations then imply that the vertical inverse of a is a�a}�a�, or that

a� = a�a}�a�.

In a similar manner, we can calculate the above statements with a replaced by a} to

see that the vertical inverse of a} is a}�a�a}�, or that

a}� = a}�a�a}�.

Combining these two equations, we conclude that the horizontal inverse of a� is a}�,

or a�} = a}�.

We can finally prove the following theorem, also due to Kock:

Theorem 3.2.7. Every double inverse semigroup D is commutative.

Proof. Let a, b ∈ D. Because inverses in either direction are unique, it suffices to show

that a�b� = b�a�. We begin the proof by establishing the following facts:
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The first step is to recognise that the horizontal inverse of ab is (ab)} = b}a}

and rewrite this six-fold horizontal product. We then add the bottom two rows by

trading a�, b�, . . . with their respective conjugations with their vertical inverses. We

then swap the a�} and the b�}, which is justified by Theorem 3.2.1, since we have a

4x4 subrectangle of products. We then recognise that the columns all now collapse

to a single element and we can evaluate the remaining six-fold horizontal product.

Similarly, one calculates that

These two equations together, then, imply that the vertical inverse of ab is

a�b�a}�b�}a�b�, or that (note that a�} = a}�)

a�b�a}�b}�a�b� = a�b�.

If we replace each argument above with its horizontal inverse and do the calculations

again, we find that

a}�b}�a�b�a}�b}� = a}�b}�.
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These two equations imply that the horizontal inverse of a�b� is a}�b}�. However,

(b�a�)} = a�}b�} = a}�b}�, too. By uniqueness of inverses, then, a�b� = b�a�

and we are done.

3.3 Existence of Double Inverse Semigroups

Upon discovery that all double inverse semigroups need be commutative, one natu-

rally asks: “Do any double inverse semigroups exist?” The answer is yes: for example,

any Abelian group can be made into a double inverse semigroup by making both oper-

ations the group operation. The question, then, should rather be “Do any interesting

(in the sense that both operations are not the same) double inverse semigroups exist?”

Using the smallsemi package of the GAP (Groups, Algorithms and Program-

ming) programming language [7], all commutative inverse semigroups of order 2 and

3 were calculated and recovered. Except for group operations, it was determined by

manual calculation that no non-trivial double inverse semigroups of order 2 or 3 exist;

each pair failing to satisfy middle-four interchange.

In the comments of Kock’s paper [9], he writes: “I should admit at this point

that I don’t know any significant examples of inverse double semigroups.” It would

appear, then, that the existence of interesting double inverse semigroups may not be

so obvious.

It is this search for an example of a non-trivial double inverse semigroup that mo-

tivates the bulk of this thesis. In Chapter 6, we will introduce a known construction

of inverse semigroups from what are called inductive groupoids. We will then gen-

eralise this in Chapter 7 to a construction of double inverse semigroups from double

inductive groupoids in attempt to draw a correspondence between the two.

This will allow us to attempt a characterisation of double inverse semigroups. It

will become apparent that the commutativity of double inverse semigroups described

in Theorem 3.2.7 plays a crucial role not only in the existence of the isomorphism,

but also in the characterisation of double inverse semigroups.



Chapter 4

Internal Categories

In this chapter, we will define internal categories. In the next chapter, it will be seen

that categories internal to Cat are what are known as double categories. Also in

the next chapter, this definition will be contrasted to another known definition of a

double category, both definitions offering some intuition in how they work.

4.1 Internal Categories

On page 10 of [10], Mac Lane introduces a definition of a category speaking only of

functions between a set of objects and a set of arrows. His definition makes no mention

of the specific objects within the set of objects. This definition can be generalised in

the sense that our “sets” of objects and arrows and “functions” between them could

possibly be objects from some other category and morphisms between them. This

generalisation will be the basis of our second definition of a double category. It is this

generalisation which likely inspired the following definition, first made by Ehressman

in [6]:

Definition 4.1.1. Let A be any complete category. A category internal to A consists

of the following data:

– An object C0 ∈ A0 of objects.

– An object C1 ∈ A0 of morphisms.

– Source and target morphisms s, t : C1 ⇒ C0.

– An identity-assigning morphism e : C0 → C1.

– A composition morphism c : C1 ×C0 C1 → C1.

20
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These data are such that the following diagrams commute:

(1) Commutativity of source and target with the identity:

C0
e //

idC0
  

C1

s

��

C0

and

C0
e //

idC0
  

C1

t

��

C0

(2) Commutativity of source and target with composition:

C1 ×C0 C1
c //

π1

��

C1

s

��

C1 s
// C0

and

C1 ×C0 C1
c //

π2

��

C1

t

��

C1 t
// C0

(3) Associativity of composition:

C1 ×C0 C1 ×C0 C1

c×C0
idC1 //

idC1
×C0

c

��

C1 ×C0 C1

c

��

C1 ×C0 C1 c
// C1

(4) Commutativity of left and right identity for composition:

C0 ×C0 C1

e×C0
idC1 //

π2

))

C1 ×C0 C1

c

��

C1 ×C0 C0

idC1
×C0

e
oo

π1

uu
C1

In the preceding diagrams, pullback C1 ×C0 C1 is defined via the square

C1 ×C0 C1
π2 //

π1
��

C1

s

��

C1 t
// C0
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We now make two remarks: First, this pullback always exists in A, since A was

chosen to be complete. Second, the commutativity of this diagram implies that

π1t = π2s, or that the source of the second coordinate must be the target of the first.

This matching of domain and codomain for composition is exactly what we want

and thus this pullback square is the correct notion of domain for our composition

morphism. �

A good example of an internal category is a double category, which will be defined

in Chapter 5. We can, however, provide a basic example of an internal category: the

familiar notion of a small category.

Proposition 4.1.2. Categories internal to Set are small categories.

Proof. First, suppose that we are given a small category C. Let C0 be the set of

objects in C and let C1 be the set of all arrows in C. Obviously, C0 and C1 are

objects in Set. We now must define our required arrows (set functions) s, t, e and c :

– Define functions s, t : C1 → C0 by fs = fdom and ft = fcod for all f ∈ C1.

– Define a function e : C0 → C1 by xe = 1x for all x ∈ C0.

– Define a function c : C1 ×C0 C1 → C1 by (f, g)c = f ◦ g for all (f, g) ∈ C1 ×C0 C1.

Note that C1×C0 C1 is just a subset of the Cartesian product (since we are in Set)

C1 × C1 such that for any (f, g) ∈ C1 ×C0 C1, we have ft = gs, which is exactly

what we require for composition in C. That is, this function is indeed well defined

everywhere.

We now check that the required diagrams commute:

(1) Commutativity of source and target with the identity: Take any x ∈ C0. Then

xes = 1xs = x and xidC0 = x and the left triangle commutes. Similarly, the right

triangle commutes.

(2) Commutativity of source and target with composition: Take any (f, g) ∈ C1 ×C0

C1. Then (f, g)cs = (f ◦ g)s = fs and (f, g)π1s = fs and the left square com-

mutes. Similarly, the right square commutes.
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(3) Associativity of composition: Associativity of composition is directly inherited

from the associativity of composition in C.

(4) Commutativity of left and right identity for composition: Take any (x, f) ∈

C0 ×C0 C1. Then fs = x and both (x, f)(e×C0 idC1)c = (1x, f) = 1x ◦ f = f and

(x, f)π2 = f. The left triangle is thus commutative. Similarly, the right triangle

commutes.

Having the required functions defined that satisfy the required diagrams, C is a

category internal to Set.

Conversely, suppose we are given a category A internal to Set consisting of a set

of objects C0 and a set of arrows C1 together with the functions s, t, e and c satisfying

the required diagrams. We now define a category C with the following data:

– A set of objects C0 = C0.

– For any two objects x, y ∈ C0, a set of arrows C(x, y) ⊆ C1. We say f ∈ C(x, y) if

fs = x and ft = y. It is clear, then, that C(x, y)×C(y, z) is a subset of C1×C0 C1

and we can thus define, for any x, y, z ∈ C0, a composition function

◦ : C(x, y)×C(y, z)→ C(x, z)

by f ◦ g = (f, g)c. This composition is associative by associativity of c in A. For

any object x ∈ C0, we define an identity arrow 1x = xe. By the commutativity of

e with c, we know that, for any f : x→ y,

f ◦ 1y = f = 1x ◦ f.

Having defined all required data and having checked all required conditions, we con-

clude that C is a small category.



Chapter 5

Double Categories

In this chapter, we will define double categories in two ways: an object-arrow defini-

tion (as in the normal categorical way) and an arrows-only approach (in an internal

categorical way). We will then show that these two definitions are equivalent, thus

drawing insight from both descriptions. In the final section of this chapter, we at-

tempt to view double semigroups in a double categorical perspective using a known

construction for semigroups from double groupoids.

5.1 Double Categories

Definition 5.1.1. A double category D consists of the following data:

– A collection Obj(D) of objects.

– For any two objects A,B ∈ D, a collection Ver(D)(A,B) of vertical arrows. We

denote a vertical arrow f ∈ Ver(D)(A,B) as f : A • //B or A
f
• //B. These col-

lections of vertical arrows come together with:

• For any objects A,B,C ∈ D, an associative vertical composition function

• : Ver(D)(A,B)× Ver(D)(B,C)→ Ver(D)(A,C).

• For any object A ∈ D, a vertical identity arrow 1A : A • //A such that, for

any arrow f : A • //B in Ver(D),

f • 1B = f = 1A • f.

– For any two objects A,B ∈ D, a collection Hor(D)(A,B) of horizontal arrows. We

24
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denote these horizontal arrows in the usual way. These horizontal arrows come

together with:

• For any objects A,B,C ∈ D, an associative horizontal composition function

◦ : Hor(D)(A,B)× Hor(D)(B,C)→ Hor(D)(A,C).

• For any object A ∈ D, a horizontal identity arrow idA : A→ A such that, for

any arrow f : A→ B in Hor(D),

f ◦ idB = f = idA ◦ f.

– A collection Dbl(D) of double cells. A double cell α has the following form:

A
f
//

u•
��

α

B

v•
��

C g
// D

where

• A,B,C and D are objects of D.

• u and v, vertical arrows, are the horizontal domain and codomain, respectively,

of α. We denote these as u = αhdom and v = αhcod.

• f and g, horizontal arrows, are the vertical domain and codomain, respectively,

of α. We denote these as f = αvdom and g = αvcod.

These doubles cells must come together with:

• An associative horizontal composition defined by, for α, β ∈ Dbl(D),

A
f
//

u•
��

α

B
f ′
//

v•
��

β

C

w•
��

D g
// E

g′
// F

=

A
f◦f ′

//

u•
��

α◦β

C

w•
��

D
g◦g′

// F
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together with, for any α ∈ Dbl(D), horizontal identity double cells such that

A
f
//

u•
��

α

B
idB //

w•
��

idw

B

w•
��

C g
// D

idC
// D

=

A
f
//

u•
��

α

B

w•
��

C g
// D

=

A
idA //

u•
��

idu

A
f
//

αu•
��

B

w•
��

C
idC
// C g

// D

• An associative vertical composition defined by, for α, β ∈ Dbl(D),

A
f
//

u•
��

α

B

w•
��

C g
//

u′ •
��

β

D

w′•
��

E
h
// F

=

A
f
//

u•u′ •
��

α•β

B

w•w′•
��

E
h
// F

together with, for any α ∈ Dbl(D), vertical identity double cells such that

A
f
//

u•
��

α

B

w•
��

C g
//

1C •
��

1g

D

1D•
��

C g
// D

=

A
f
//

u•
��

α

B

w•
��

C g
// D

=

A
f
//

1A •
��

1f

B

1B•
��

A
f
//

u•
��

α

B

w•
��

C g
// D

• Horizontal and vertical composition of double cells must satisfy the middle-

four interchange law. That is, for any α, β, γ, δ ∈ Dbl(D),

(α • β) ◦ (γ • δ) = (α ◦ γ) • (β ◦ δ).

If it is the case that Ver(D) = Hor(D) and the horizontal and vertical composi-

tions are the same operation, then we can omit the dots on vertical arrows and use

concatenation to denote this composition without any ambiguity. �

Example 5.1.2. Let C be a category. Define Q4(C) to be the double category

with objects Q4(C)0 = C0, horizontal arrows Hor(Q4(C)) = C1, vertical arrows
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Ver(Q4(C)) = C1 and double cells squares

A
f
//

u
��

B

w
��

C g
// D

such that fw = ug.

Note that the lack of dots on the vertical arrows in the above is unambiguous,

since the vertical and horizontal arrows in Q4(C) are the same.

We define the horizontal composite of two double cells (commutative squares) as

follows:

A
f
//

u
��

B

v
��

g
// C

w
��

D
h
// E

i
// F

=

A
f◦g
//

u
��

C

w
��

D
h◦i
// F

We define a similar vertical composition. That middle-four is satisfied is obvious since

both compositions of

A
f
//

u
��

B
g
//

u
��

C

w
��

D h //

x
��

E i //

y
��

F

z
��

G
j
// H

k
// I

result in the double cell

A
fg
//

ux
��

C

wz
��

G
jk
// I

N

Example 5.1.3. Let C be a category. Define H(C) to be the double category

with objects H(C)0 = C0, horizontal arrows Hor(H(C)) = C1, vertical arrows

Ver(H(C)) = {1a : a → a|a ∈ C0}, the identity arrows from C, and double cells
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the vertical identities

A
f
//

1A
��

1f

B

1B
��

A
f
// B

We define the horizontal composition of double cells (vertical identities) as follows:

A

1f

f
//

1A
��

B

1B
��

1g

g
// C

1C
��

A
f
// B g

// C

=

A

1f◦1g

fg
//

1A
��

C

1C
��

A
fg
// C

We define the vertical composition analogously, which implies that the vertical struc-

ture is trivial (since it is induced by vertical composition of vertical identities). We

can also see that horizontal composition is well defined: the composition of two verti-

cal identities (double cells) gives us another vertical identity. Middle-four is trivially

satisfied since

(1f ◦ 1g) • (1f ◦ 1g) = 1f ◦ 1g = (1f • 1f ) ◦ (1g • 1g). N

The preceding example is indeed not very interesting in terms of being a double

category; the triviality of the vertical composition actually means that is just a (single)

category. This example is useful, however, since our choice of double cells shows us

that a given double category D admits two natural categories:

(i) A category whose objects are the horizontal arrows of D, whose arrows are the

double cells of D and whose composition is the vertical composition of D. This

makes sense since the vertical domains and codomains of double cells in D are

horizontal arrows.

(ii) Similarly, there is a category whose objects are the vertical arrows of D, whose

arrows are the double cells of D and whose composition is the horizontal com-

position of D.

The usefulness of these constructions will become extremely apparent when we are
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working with double inductive groupoids in Chapter 7.

Example 5.1.4. Let C be a 2-category. Define Q5(C) to be the double category

with objects Q5(C)0 = C0, horizontal arrows Hor(Q5(C)) the 1-cells of C, vertical

arrows Ver(Q5(C)) the 1-cells of C and double cells be the 2-cells α : fw ⇒ ug :

A
f
//

u
��

α

B

w
��

C g
// D

We check that horizontal composition of 2-cells in the usual sense works in the dou-

ble categorical sense. That vertical composition also works follows analogously and

identities for both are obvious. If α, β ∈ Dbl(Q5(C), then the composition

A
f
//

u
��

α

B
f ′
//

v
��

β

C

w
��

D g
// E

g′
// F

=

A
f◦f ′

//

α◦βu
��

C

w
��

B
g◦g′
// F

is indeed well defined since there exists a 2-cell (we use juxtaposition notation for

composition, since both the vertical and horizontal arrows are the same)

α ◦ β : ff ′w
fβ
+3 fvg′

αg′
+3 ugg′ N

We now check that middle-four is satisfied. Any 4-tuple of composable cells

A

α

f
//

u
��

B

β

g
//

u
��

C

w
��

D

γ

h //

x
��

E

δ

i //

y
��

F

z
��

G
j
// H

k
// I

is known as a pasting diagram in a 2-category. It is well known that this pasting is

unique in the sense that any path one takes in evaluating this product resolves to
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the same cell. In particular, we could take the vertical composite of the horizontal

composites or vice-versa and get equality of the two, implying that middle-four is

satisfied.

5.2 Double Functors

In a later Chapter 7, we will need to consider functors between certain double cate-

gories. These functors are natural extensions of functors between categories. Instead

of having only one arrows function, however, we will require three: one for each of

the sets of vertical arrows, horizontal arrows and double cells. Also, we will require

that the arrow function on double cells preserves identities and composition in both

directions, of course. Formally, we make the following definition:

Definition 5.2.1. Let

C = (Obj(C),Ver(C),Hor(C),Dbl(C)) and D = (Obj(D),Ver(D),Hor(D),Dbl(D))

be double categories. A double functor, often called simply a functor, F : C → D

contains the following data:

– An object function F : Obj(C)→ Obj(D).

– For any a, b ∈ Obj(C), a vertical arrow function F : Ver(C)(a, b)→ Ver(D)(aF, bF )

such that

• For any composable pair of arrows f, g ∈ Ver(C), (f • g)F = fF • gF.

• For any object a ∈ Obj(C), 1aF = 1aF .

– For any a, b ∈ Obj(C), a horizontal arrow function F : Hor(C)(a, b)→ Hor(D)(aF, bF )

such that

• For any composable pair of arrows f, g ∈ Hor(C), (f ◦ g)F = fF ◦ gF.

• For any object a ∈ Obj(C), idaF = idaF .
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– For any pair (f, g) of horizontal arrows and pair (u, v) of vertical arrows, a double

cell function

F : {α ∈ Dbl(D)|αvdom = f, αvcod = g, αhdom = u, αhcod = v}

→ {α ∈ Dbl(D)|αvdom = fF, αvcod = gF, αhdom = uF, αhcod = vF}

such that

• For any horizontally composable pair of arrows α, β ∈ Dbl(C), (α ◦ β)F =

αF ◦ βF.

• For any vertically composable pair of arrows α, β ∈ Dbl(C), (α•β)F = αF•βF.

• For any horizontal arrow f ∈ Hor(C), 1fF = 1fF .

• For any vertical arrow u ∈ Ver(C), iduF = iduF . �

5.3 Categories Internal to Cat

As has been previously stated, there are two ways to consider the notion of double

categories: there is the object-arrow-double cell definition from the previous section

or there is the internal categorical definition, which will be presented in the following

proposition. Both ways of viewing double categories offer their benefits and insights;

the object-arrow-double cell definition gives us a more concrete, hands on and visual

way of manipulating double categories, while the internal definition gives us a more

streamlined and standard approach to constructing new types of double categories

by considering them as categories internal to some category of interest. The proof

of the following proposition will give insight and intuition into some of the kinds of

conditions that need be satisfied by internal structures, which will help us in Chapter

7 when we are trying to define double inductive groupoids.

Proposition 5.3.1. Categories internal to Cat are double categories.

Proof. First, suppose that we are given a double category D with its accompanying

data Obj(D),Ver(D),Hor(D) and Dbl(D). We define a category of objects D0 as a
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category with objects the elements of Obj(D) and arrows the elements of Ver(D). We

define a category of arrows D1 as a category with objects the elements of Hor(D) and

arrows the elements of Dbl(D). These are indeed categories, since the definition of a

double category lends associative and unital composition functions to both vertical

arrows (whose domains and codomains are objects of D) and double cells (whose hor-

izontal domains and codomains are arrows in Hor(D)). Having chosen our categories,

we now define those functors required by categories internal to Cat :

– We first define the source and target functors, s, t : D1 ⇒ D0 : For any object

(horizontal arrow) f in D1, define fs = fdom and ft = fcod. For any arrow

(double cell) α in D1, define αs to be the horizontal domain of α and αt to be the

horizontal codomain of α. We check only the functoriality of s; that t is functorial

is analogous. Objects in D1 are horizontal arrows, the vertical domain of double

cells, and we thus use vertical composition and identities of the double cells in D1.

We first recall that if we have two composable double cells α, β ∈ D1, then

A
f
//

u•
��

α

B

w•
��

C g
//

u′ •
��

β

D

w′•
��

E
h
// F

=

A
f
//

u•u′ •
��

α•β

B

w•w′•
��

E
h
// F

It is then clear that αs • βs = u • u′ = (α • β)s and composition is thus preserved

by s. For any horizontal arrow f : A→ B, we have the identity double cell

A
f
//

1A •
��

1f

B

1B•
��

A
f
// B

It is again clear that 1fs = 1A = 1fs and we have shown that s is functorial.

– We now define the identity-assigning functor, e : D0 → D1 : For any object A in D0,

define Ae = idA, the horizontal identity of A. For any (vertical) arrow u : A • //B,
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define ue = idu, the horizontal identity double cell induced by u. We now check that

e is functorial. If we have a pair of composable arrows A u• //B
u′• //C , consider

the diagram

A
idA //

u•
��

idu

A

u•
��

B
idB //

u′ •
��

idu′

B

u′•
��

C
idC

// C

=

A
idA //

u•u′ •
��

idu•idu′

A

u•u′•
��

C
idC

// C

We note that the double cell idu • idu′ is equal to the double cell idu•u′ , due to its

boundary arrows. Then (u•u′)e = idu•u′ = idu•idu′ = ue•u′e and thus composition

is preserved by e. If A is any object of D0, we consider the diagram

A
idA //

1A •
��

id1A

A

1A•
��

A
idA
// A

We note that the double cell id1A is equal to the double cell 1idA , due to its boundary

arrow. Then 1Ae = id1A = 1idA = 1Ae and thus identities are preserved by e and

we have shown e to be functorial.

– Finally, we define the composition functor, c : D1 ×D0 D1 → D1 : For any pair of

horizontal arrows (f, g) ∈ D1 ×D0 D1, define (f, g)c = f ◦ g. This is well defined,

since (f, g) ∈ D1 ×D0 D1 means that ft = gs and thus are composable in Hor(D).

For any two double cells α, β ∈ D1 ×D0 D1, define (α, β)c = α ◦ β. Again, that

(α, β) ∈ D1 ×D0 D1 implies that αt = βs and thus the horizontal domains and

codomains match and this horizontal composite makes sense. We now verify that

c is indeed functorial. Recall that composition within D1 is vertical composition of

double cells. If we have a vertically composable pair of pairs of horizontal arrows

(α, β), (γ, δ) ∈ D1 ×D0 D1, note that by the definition of composition of ordered

pairs and finally by the middle-four interchange property inherited from D, we have
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preservation of composition since

((α, β) • (γ, δ)) c = (α • γ, β • δ)c

= (α • γ) ◦ (β • δ)

= (α ◦ β) • (γ ◦ δ)

= (α, β)c • (γ, δ)c

To check that identities must commute, we first consider what types of identities

must be in these ordered pairs. Note that since any pair (f, g) ∈ D1 ×D0 D1 must

be such that the domain of g is the codomain of f and that any vertical identity is

uniquely determined by its domain (or codomain), it follows that any pair of identities

in D1 ×D0 D1 are actually pairs of the same identity. Furthermore, since we are

composing these vertical identities horizontally, it follows that these domains must

be endomorphisms. Otherwise, we would not be able to compose the cells. Visually,

we have composites such as

A
f
//

1A •
��

1f

A
f
//

1A •
��

1f

A

1A•
��

A
f
// A

f
// A

=

A
f◦f
//

1f◦1f1A •
��

A

1A•
��

A
f◦f
// A

It is clear, then, that (1f , 1f )c = 1(f,f)c and c is thus functorial. We now check that

the required diagrams commute:

(1) Commutativity of source and target with composition: We check only commuta-

tivity of source. Target follows analogously. For any object x ∈ D0, we have that

xes = idxs = x. For any arrow f : x • //y ∈ D0 we have that fes = idfs = f.

(2) Commutativity of source and target with composition: Again, we check only the

commutativity of source. For any pair of objects (horizontal arrows) (f, g) ∈

D1 ×D0 D1, we have that both (f, g)cs = (f ◦ g)s = fs and (f, g)π1s = fs. For

any pair of arrows (double cells) (α, β) ∈ D1 ×D0 D1, we also have that both

(α, β)cs = (α ◦ β)s = αs and (α, β)π1s = αs.
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(3) Associativity of composition is inherited from the composition in Hor(D), since

its components are both defined via this composition.

(4) Commutativity of left and right identities for composition: We check only the

left identities. The commutativity of the right identities follows analogously.

For any object pair (x, f) ∈ D0 ×D0 D1, we know that this implies that x =

fs. Then (x, f)(e ×D0 idD1)c = (idx, f)c = idx ◦ f = f = π2(x, f). For any

arrow pair (u, α) ∈ D0 ×D0 D1, we know that this implies that u = αs. Then

(u, α)(e×D0 idD1)c = (idu, α) = idu ◦ α = α.

Having defined all of the appropriate functors such that all required diagrams com-

mute, we conclude that D is indeed a category internal to Cat.

Conversely, suppose that we are given a category (D0, D1) internal to Cat with

its accompanying data, namely those functors s, t, e and c that satisfy the commu-

tativity of all the required diagrams. We define a double category D as the double

category with objects those of D0, vertical arrows the arrows of D0, horizontal ar-

rows the objects of D1 and double cells the arrows of D1. We define, for any two

vertical arrows u, v ∈ Ver(D) with ut = vs, the vertical composite u • v simply as

the composition of arrows in D0. This composition then meets all of the associativity

and unital requirements. We define, for any two horizontal arrows f, g ∈ Hor(D)

with ft = gs, the horizontal composite f ◦ g as (f, g)c, the object function of the

provided composition functor c. Again, because c comes from the internal category,

all associativity and unital requirements are met. On double cells α and β, there is

some variety. First, since D1 is itself a category, it comes with its own associative and

unital composition of double cells whose vertical domains and codomains (horizontal

arrows) match. We can then define the vertical composite α • β as this composite

whenever α : f → g and β : g → h. On the other hand, we have our composition

functor c : D1 ×D0 D1 → D1, which is defined whenever (α, β) ∈ D1 ×D0 D1, or when

αt = βs (which are vertical arrows, the horizontal domain and codomain). In such a

case, then, we define the horizontal composite α ◦ β as (α, β)c, the arrow part of the

composition functor. These compositions are both unital and associative. It remains,



36

however, to show they satisfy the middle-four interchange. Indeed, this follows imme-

diately from the definition of a product category and the functoriality of c. Suppose

that we have double cells α, β, γ and δ such the composite (α ◦ β) • (γ ◦ δ) exists.

Then

(α ◦ β) • (γ ◦ δ) = (α, β)c • (γ, δ)c

= [(α, β) • (γ, δ)] c (functoriality of c)

= (α • γ, β • δ)c

= (α • γ) ◦ (β • δ)

Having defined all parts of a double category and having verified that middle-four

is satisfied, we can conclude that D as defined is indeed a double category and the

proposition is proved.

5.4 Double Inverse Semigroups Revisited

Double semigroups and double categories seem to share some properties. For ex-

ample, both structures have two associative products defined on some of their data

(double semigroups the semigroup products on their elements and double categories

the horizontal and vertical compositions on their arrows and double cells). Though

seemingly arbitrary at first glance, the choice that double semigroups must satisfy

the interchange law is a choice which, when manipulated, yields some interesting re-

sults. Recall that the horizontal and vertical composition of double cells of a double

category must satisfy a similar interchange law. Further evidence, then, that this

interchange law may be the correct choice of relationship between the two associative

binary operations of a double semigroup is that any double semigroup can be con-

sidered exactly as a double semicategory, where a double semicategory is defined as

follows:

Definition 5.4.1. A double semicategory is a double category without the require-

ment that horizontal and vertical composition of vertical and horizontal arrows (and,
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consequently, double cells) have identities. �

Note. It is interesting to note that a double semicategory is a semicategory internal

to the category of semicategories.

Given a double semigroup, we can construct a double semicategory in the following

way:

Construction 5.4.2. Let (D,},�) be a double semigroup. Define DCat(D) to be

the double semicategory with the following data:

– There is only one object, call it ∗.

– There is only one vertical arrow, call it v.

• With having only one vertical arrow, the vertical composition • is such that

v is an identity. That is, we know that v • v = v.

– There is only one horizontal arrow, call it h.

• It is noted now that the horizontal composition is such that h is an identity,

as above.

– A square

∗ h //

v•
��

α

∗
v•
��

∗
h
// ∗

is a double cell in DCat(D) if and only if α is an element of D.

• The vertical composition is � and the horizontal composition is }. Since

} and � are double semigroup operations and thus satisfy the middle four

interchange, it follows that the horizontal and vertical composition of the

double cells satisfy the interchange law, too. ♦

This construction is nice in the sense that it gives a double categorical inter-

pretation of a double semigroup. It is, however, the case that this construct yields
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only double semigcategories. Though the fact that double semigroups satisfy the

middle-four interchange and the operations are associative does not imply a stronger

relationship between double semigroups and double categories, it would be nice to

get one.

There is a construction of double semigroups given a double semicategory with

one object, one vertical arrow and one horizontal arrow. It is worth noting it here:

Construction 5.4.3. Given a double semicategory D with one object, one idempo-

tent vertical arrow v with respect to • and one idempotent horizontal arrow h with

respect to ◦. construct a double semigroup (S,},�) with elements being the dou-

ble cells of D, } being ◦ and � being •. Since all double cells are composable in

a single-object, idempotent-arrow double category, and the operations come from a

double semicategory, middle-four is satisfied. The products are compositions and are

obviously associative, so S is a double semigroup. ♦

We turn our attention now to attempting a construction of double semigroups

given double categories with multiple objects. Our double semigroups of interest, in

particular, are double inverse semigroups, so restricting ourselves to double inverse

semigroups will have no drawbacks. Lawson [11] introduces a construction of inverse

semigroups from groupoids:

Definition 5.4.4. A groupoid is a category in which every morphism is an isomor-

phism. �

The construction is as follows:

Construction 5.4.5. Given a groupoid G, construct an inverse semigroup (S,�)

with elements the arrows of G and for any a, b ∈ S, the product is defined as

a� b =

 a • b if a, b ∈ G1 and acod = bdom

0 otherwise

This product is associative: for any 3-fold product a � b � c in S, we have two

possibilities. If each of a, b and c are composable arrows in G, then this product is
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simply the composite and is thus associative. If any of a, b or c are not composable

or are not arrows in G, then we will have 0 in the resulting product. Then the whole

product will be zero and associativity is trivial. This product also admits unique

inverses: If a is an arrow in G, then a� = a−1, the unique inverse from G. The inverse

of 0. If a = 0�, then a = 0a0 = 0. ♦

Lawson also gives a construction of groupoids from inverse semigroups. This con-

struction is exactly that in the next chapter, without the definition of (co)restrictions.

Lawson remarks that the only inverse semigroups that arise from this construction

are primitive; that is, if 0 6= e ≤ f are idempotents, then e = f. In an attempt to

generalise this to double categories, we propose the following construction:

Construction 5.4.6. Given a double groupoid D, construct a double inverse semi-

group (S,},�) with elements the double cells of D and for any a, b ∈ S, products

a} b =

 a ◦ b if a, b ∈ Ver(D) and ahcod = bhdom

0 otherwise

and

a� b =

 a • b if a, b ∈ Hor(D) and avcod = bvdom

0 otherwise
♦

That is, we can construct a double semigroup with zero, making all undefined

horizontal and vertical composites of double cells zero, out of any double groupoid.

This class of semigroups is restrictive, however, since only certain classes of double

groupoids give rise to a double semigroup in this way. The problem comes from

middle-four not always being satisfied in the resulting double semigroup. Suppose,

for example, that one has the following configuration of double cells in a double

groupoid:

•
��

//

α β
u
•

�� •

��

v
•
��

//

•
��

γ

//

•
��

=

w •
��

=

δx•
��

//

•
��// //
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In such a diagram, neither of the horizontal composites, α ◦β and γ ◦ δ, exist and are

thus zero in the double semigroup we are constructing. Let us, for convenience, use the

same symbols for the semigroup operations as the composition in the double category.

Then we have that (α ◦ β) • (γ ◦ δ) = 0 • 0 = 0. However, we know that the vertical

composites α•γ and β•δ are both non-zero (their domains and codomains match) and

the composites are horizontally composable (since the composites of the horizontal

domains and codomains are equal by assumption). So the composite (α • γ) ◦ (β • δ)

is not zero and middle-four is not satisfied. One can solve this problem by requiring

unique factorisation of both the vertical and horizontal arrows in a double category.

That is, the requirement that two composites f • g = f ′ • g′ implies that f = f ′ and

g = g′ (similarly for the horizontal composition). If G is such a double groupoid, a

an object and f : a • //b a vertical arrow, then

f = 1a • f = f • 1b

implies, by unique factorisation, that f = 1a = 1b. That is, there are only identity

arrows in a double groupoid with unique factorisation. The corresponding double

inverse semigroup, then, is a disjoint union of double groups, or Abelian groups.

The correspondence, then, between double groupoids and double inverse semigroups

induced by this construction is not very interesting.

To be able to construct a non-trivial double inverse semigroup from any double

groupoid, then, does not appear to be possible. We explore, then, another construc-

tion of inverse semigroups from another class of groupoids, which will be detailed in

the next chapter, that will solve this problem.



Chapter 6

Inductive Groupoids

The troubles encountered in the previous chapter while constructing double semi-

groups from double semicategories have not been much studied. However, there has

been some work done constructing certain categories from certain semigroups. In

particular, Lawson [11] studied the relationship between inverse semigroups and in-

ductive groupoids. Unless commonly known or explicitly stated, it is from Lawson

that the following definitions and theorems have been retrieved. In this chapter, we

will consider a special type – inductive – of groupoids. In order to be able to define

an inductive groupoid, we will require first the notion of an ordered groupoid. An

ordered groupoid in turn requires the definition of some kind of order on the groupoid

structure, namely that of a partial order:

Definition 6.0.7. Let S be a set. A partial order on S, ≤, is a binary relation such

that, for all a, b, c ∈ S, ≤ is

(i) reflexive : a ≤ a.

(ii) antisymmetric : if a ≤ b and b ≤ a, then a = b.

(iii) transitive : if a ≤ b and b ≤ c, then a ≤ c.

A set S equipped with a partial order is called a partially ordered set. �

Definition 6.0.8. A partially ordered set S is said to be a meet-semilattice if, for all

a, b ∈ S, the greatest lower bound, called the meet, of the set {a, b} exists. �

6.1 Inductive Groupoids

In any category, there is an obvious correspondence between the objects and identity

morphisms given by 1a 7→ a and a 7→ 1a. It is due to this correspondence that we

41
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identify, without any ambiguity, the set of objects in a given category with its set of

identity morphisms. In the following definition, for example, we will use this identi-

fication to discuss comparisons between objects in a category using the partial order

on its arrows. In addition to this identification allowing the objects of a groupoid

to inherit the order structure on the arrows, it also admits a more streamlined nota-

tion when discussing partial orders on categorical structures such as in the following

definition:

Definition 6.1.1. Let (G, •) be a groupoid and let ≤ be a partial order defined on the

arrows of G. We call (G, •,≤) an ordered groupoid whenever the following conditions

are satisfied (where G1 is the set of arrows in G) :

(i) For all x, y ∈ G1, x ≤ y implies x−1 ≤ y−1.

(ii) For all x, y, u, v ∈ G1, if x ≤ y, u ≤ v and the composites xu and yv exist in G,

then xu ≤ yv.

(iii) Let x ∈ G1 and let e be an object in G such that e ≤ xdom. Then there is a

unique element (e∗|x) ∈ G1, called the restriction of x by e, such that (e∗|x) ≤ x

and (e∗|x)dom = e.

(iv) Let x ∈ G1 and let e be an object in G such that e ≤ xcod. Then there is a unique

element (x|∗e) ∈ G1, called the corestriction of x by e, such that (x|∗e) ≤ x and

(x|∗e)cod = e.

We say that G is an inductive groupoid if the further condition that the objects of

G (or, equivalently by our identification, the arrows of G) form a meet-semilattice is

satisfied. �

We now describe maps between inductive groupoids:

Definition 6.1.2. A functor F : G → G′ between two inductive groupoids is called

inductive if it preserves both the order and the meet operation on the set of objects.

�
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Proposition 6.1.3. Let (G, •,≤) be an ordered groupoid. Let x, y, z ∈ G1 and let e

and f be objects in G.

(1) If x ≤ y, then xdom ≤ ydom and xcod ≤ ycod.

(2) If the composite xy exists and e ≤ (xy)dom, then

(e∗|xy) = (e∗|x)((e∗|x)cod∗|y).

(3) If the composite xy exists and e ≤ (xy)cod, then

(xy|∗e) = (x|∗(y|∗e)dom)(y|∗e).

(4) If z ≤ xy, then there exist x′, y′ ∈ G1 such that x′y′ exists, x′ ≤ x, y′ ≤ y and

z = x′y′.

(5) If f ≤ e ≤ xdom, then (f ∗|x) ≤ (e∗|x) ≤ x.

(6) If f ≤ e ≤ xcod, then (x|∗f) ≤ (x|∗e) ≤ x.

Proof. (1): If x ≤ y, then x−1 ≤ y−1 by the first axiom of ordered groupoids. Then

xdom = xx−1 ≤ yy−1 = ydom and xcod = x−1x ≤ y−1y = ycod by the second axiom

of inductive groupoids.

(2): We have that e ≤ (xy)dom = xdom, so the restriction (e∗|x) exists. Also,

(e∗|x) ≤ x so (e∗|x)cod ≤ xcod = ydom and thus the restriction ((e∗|x)cod∗|y) ≤ y

exists. Then by the axioms of ordered groupoids, (x|∗e)((x|∗e)cod∗|y) ≤ xy and thus

((e∗|x)((e∗|x)cod∗|y))dom = e ≤ (xy)dom and thus, by uniqueness of restrictions,

(e∗|x)((e∗|x)cod∗|y) = (e∗|xy).

(3): This is analogous to (2).

(4): Let z ≤ xy. Then by the axioms of ordered groupoids, zcod ≤ (xy)cod and thus
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the corestriction (xy|∗zcod) exists. By the definition of corestriction, (xy|∗zcod)cod =

zcod and (xy|∗zcod) ≤ xy. Then by the uniqueness of corestrictions, z = (xy|∗zcod).

By (3) of this proposition, then,

z = (xy|∗zcod) = (x|∗(y|∗zcod)dom)(y|∗zcod).

Let x′ = (x|∗(y|∗zcod)dom) ≤ x and let y′ = (y|∗zcod) ≤ y. Then z = x′y′ and the

remaining requirements are satisfied.

(5) : Suppose that e ≤ f ≤ xdom. Then the restrictions (f ∗|x) and (e∗|x) certainly

both exist and are both less than or equal to x. We show, then, that (f ∗|x) ≤

(e∗|x). First, note that f ≤ e = (e∗|x)dom and thus the restriction (f ∗|(e∗|x)) exists.

However, (f ∗|x)dom = f and (f ∗|x) ≤ f, so by the uniqueness of restrictions, (f ∗|x) =

(f ∗|(e∗|x)) ≤ (e∗|x).

(6): This is analogous to (5).

6.2 Inductive Groupoids to Inverse Semigroups

Having established the definition of an inductive groupoid and having proved some

elementary yet crucial facts about the order structures on them, we can now attempt

to construct inverse semigroup from inductive groupoids. This construction comes

directly from Lawson [11].

Construction 6.2.1. Given an inductive groupoid (G, •,≤,∧), construct an inverse

semigroup (S,�) with S = G1 and, for any a, b ∈ S,

a� b = (a|∗acod ∧ bdom) • (acod ∧ bdom∗|b).

Since, for any a ∈ S = G1, acod and adom are objects in G, this product is always

defined, since G0 is a meet-semilattice with respect to the ∧ operation used. ♦

The existence of the product is not enough to conclude that S is an inverse semi-

group. It remains to be shown that � is associative and has unique inverses. Showing
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associativity requires the following lemma:

Lemma 6.2.2. Let (G, •,≤,∧) be an inductive groupoid and define, for every pair of

arrows x, y ∈ G,

〈x, y〉 = {(x′, y′)|x′cod = y′dom, x′ ≤ x, y′ ≤ y}.

Then there is a maximal element (x′, y′) ∈ 〈x, y〉 (with respect to the pairwise ordering)

and x� y = x′ • y′.

Proof. We note that since G is an inductive groupoid, G0 is a meet-semilattice and

thus, for all x, y ∈ G1, the meet e = xcod ∧ ydom exists. Then both the restriction

(e∗|y) and the corestriction (x|∗e) exist with, of course, (x|∗e) ≤ x and (e∗|y) ≤ y.

Therefore, ((x|∗e), (e∗|y)) ∈ 〈x, y〉. We want to show that this is the maximal element.

If this is true, the coincidence of the two operations follows by definition of �.

Let (u, v) ∈ 〈x, y〉. Then ucod = vdom = f and both u ≤ x and v ≤ y. Then

by Proposition 6.1.3(1), it is true that ucod ≤ xcod and thus by the uniqueness of

corestrictions in an inductive groupoid, u = (x|∗ucod) = (x|∗f). Similarly, v = (f ∗|y).

We note now that f ≤ ucod, vdom ≤ xcod, ydom and thus f ≤ e. Therefore, by

Proposition 6.1.3(5) and (6), u = (x|∗f) ≤ (x|∗e) and v ≤ (e∗|x) and we have shown

that (u, v) ≤ ((x|∗e), (e∗|x)), as required.

We can now finally prove that the product defined from inductive groupoids is

indeed associative:

Lemma 6.2.3. Let G be an inductive groupoid. For all x, y, x ∈ G1, x � (y � z) =

(x� y)� z.

Proof. To prove that x � (y � z) = (x � y) � z requires that one shows that both

x� (y � z) ≤ (x� y)� z and x� (y � z) ≥ (x� y)� z, by the antisymmetry of ≤ .

We prove only one direction of this; the other direction follows analogously.

Let us start by letting (x� y)� z = a • z′, where (a, z′) ∈ 〈x� y, z〉 is maximal.

This is justified by the the above lemma. We can then also choose a = x′ • y′, where
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(x′, y′) ∈ 〈x, y〉 is maximal. Collectively, then, by the definition of 〈x � y, z〉 and

〈x, y〉, we have that a ≤ x�y = x′ •y′, z′ ≤ z, x′ ≤ x and y′ ≤ y. Since a ≤ x′ •y′, we

can use Proposition 6.1.3(4) to conclude that there are elements x′′ ≤ x′ and y′′ ≤ y′

such that a = x′′ • y′′. Then, by substitution and associativity of •, we have

(x� y)� z = a • z′ = (x′′ • y′′) • z′ = x′′ • (y′′ • z′).

By transitivity of ≤, y′′ ≤ y and z′ ≤ z, so (y′′, z′) ∈ 〈y, z〉. This implies that

y′′ ◦ z′ ≤ y � z. Combine this with the fact that x′′ ≤ x, and we conclude that

(x′′, y′′ • z′) ∈ 〈x, y � z〉, or that (x� y)� z = x′′ ◦ (y′′ ◦ z′) ≤ x� (y � z).

Finally, we can now show that our construction yields an inverse semigroup and

thus satisfies our needs.

Theorem 6.2.4. For any inductive groupoid G, IS(G) as defined in Construction

6.2.1 is an inverse semigroup.

Proof. We have already shown that IS(G) is a semigroup by verifying that its product

is associative. Clearly, every element s ∈ IS(G) has at least one inverse, namely

s′ = s−1, the inverse from the groupoid. This follows from noting that both ss−1s = s

and s−1ss−1 = s and that the operations are the same whenever these composites are

defined. We now check that all idempotents commute. The idempotents of IS(G)

are indeed the objects of G and thus, for any idempotents e, f ∈ IS(G),

e� f = (e|∗e ∧ f)(e ∧ f ∗|f) = e ∧ f = (f |∗e ∧ f)(e ∧ f ∗|e) = f � e.

Note that the equality (e∗|e∧f) = e∧f holds by the uniqueness of restrictions: since

e ≤ e∧ f, we know that e is idempotent and thus e = edom ≤ (e∧ f)dom. Therefore,

by uniqueness of restrictions, e ∧ f = (e∗|e ∧ f). By Lemma 2.2.3, then, we conclude

that IS(G) is indeed inverse.
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6.3 Inverse Semigroups to Inductive Groupoids

In addition to constructing inverse semigroups from inductive groupoids, Lawson [11]

also details how to construct inductive groupoids from inverse semigroups:

Construction 6.3.1. Given an inverse semigroup (S,�) with the natural partial

ordering ≤, define a groupoid, IG(S), with the following data:

– Its objects are the idempotents of S; IG(S)0 = E(S).

– Its arrows are the elements of S. For any s ∈ S, define sdom = ss� and scod = s�s,

where s� is the inverse of s.

• For any a, b ∈ IG(S)1, if acod = bdom, define the composite a • b = a � b,

the product in S. This composition is well defined (i.e., the composite has the

proper domain and codomain) and therefore inherently associative: if a • b

is defined, then acod = bdom, or a�a = bb�. Then (a • b)dom = (ab)dom =

(ab)(ab)� = abb�a� = aa�aa� = aa� = adom. Similarly, we have (a• b)cod =

bcod.

• Since, for any a ∈ S, (aa�)a = a(a�a) = a, this composition is always unital.

• It follows, then, that every arrow is an isomorphism with a−1 = a�, since

a−1 • a = a�a = acod and a • a−1 = aa� = adom (recall that we have

identified the objects with identity arrows). ♦

Since the objects of S are the arrows of IG(S), it follows that ≤ is also a partial

order on the arrows of IG(S). This has various consequences. In particular, we note

the following:

Theorem 6.3.2. IG(S) is an inductive groupoid with, for all a ∈ IG(S), (a|∗e) = ae

for all objects e ≤ acod and (e∗|a) = ea for all objects e ≤ adom.

Proof. It is known by Construction 6.3.1 that IG(S) is a groupoid. It remains only to

check that it satisfies those conditions outlined in the definition of inductive groupoid.

We do this now:
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(i) If x, y ∈ IG(S)1, then x = ey for some e ∈ E(S). Then x−1 = y−1e and

x−1 ≤ y−1.

(ii) If x, y, u, v ∈ IG(S)1 with x ≤ y and u ≤ v and the composites xu and xy

existing. Then x = ye for some idempotent e and u = vf for some idempotent

f. Then xu = (ye)(vf) = x(ev)f. However, ev = vi for some idempotent i and

thus xu = y(vi)f = (yv)(if) and thus xu ≤ yv.

(iii) Let s ∈ IG(S)1 with an idempotent e ≤ scod = s�s. Then it is obvious that

(s|∗e) = se ≤ s. Also (s|∗e)cod = (se)cod = ecod = e�e = e. Now, for unique-

ness. Let b ≤ (s|∗e) such that bcod = bb� = e. Then by the definition of

corestriction, b = (b|∗ss�) = bss� and thus b = (b|∗ss�) = (s|∗e).

(iv) The proof of the restriction property follows analogously.

6.4 An Isomorphism of Categories

Being able to construct an inductive groupoid given any inverse semigroup and vice-

versa is extremely useful. One may naturally, however, wonder whether these con-

structions induce functors between the category of inductive groupoids with inductive

functors and the category of inverse semigroups with semigroup homomorphisms.

Lawson establishes and describes such functors and also proves that they form an

isomorphism of categories between the category of inductive groupoids and inductive

functors and the category of inverse semigroups and semigroup homomorphisms. To

more clearly discuss these categories, we make some notational choice:

Notation. Denote the category of inverse semigroups and semigroup homomorphisms

as IS. Denote the category of inductive groupoids and inductive functors as IG.

Now, we prove the following theorem, due to Lawson [11]:

Theorem 6.4.1. The categories IG and IS are isomorphic.



49

Proof. We define a pair of functors

IG
F
**
IS

F ′
kk

as follows:

(i) F : IG→ IS :

• On objects: Given any inductive groupoid G, define GF = IS(G), as

defined in Construction 6.2.1. Recall that IS(G) = G1 with product, for

any a, b ∈ IS(G), defined by

a� b = (a|∗acod ∧ bdom) • (acod ∧ bdom∗|b).

• On arrows: For any inductive functor f : G → G′, define fF : GF →

GF ′ = f1, the arrow function of f. The arrow function preserves composi-

tion of arrows, which corresponds to multiplication of semigroup elements

thus fF is a semigroup homomorphism. Since F is the arrow function of

a functor, F is trivially functorial.

(ii) F ′ : IS→ IG :

• On objects: Given any inverse semigroup S, define SF ′ = IG(S), as

defined in Construction 6.3.1. Recall that IG(S) has the following data:

– Objects: IG(S)0 = E(S).

– Arrows: IG(S)1 = S.

• On Arrows: For any semigroup homomorphism ϕ : S → S ′, define

ϕF ′ : SF ′ → S ′F ′ as the functor with object function ϕ restricted to

E(S) and arrow function ϕ. This is functorial since the composition in G1

is the product in S and homomorphisms preserve products. This functor

is also inductive since, for any arrow a : aa� → a�a, the object and arrow

functions are semigroup homomorphisms which imply that domains and
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codomain are preserved. This preserves the order structure, then, and

therefore preserves the meet structure.

We must now check that these two functors form an isomorphism of categories,

by verifying that the composites FF ′ and F ′F are both identity functors.

Because the arrows of G are identified with the elements of IS(G), any order on

G will be the same as the order on the elements of IS(G).

We also recall that, by definition, the composition in IG(S) is exactly that of the

product in S.

Because the orders are preserved and the products are the same, it is obvious

that SF ′F = IS(IG)(S) = S for any inverse semigroup S. We now consider the

composite GFF ′ = IG(IS(G)) for an inductive groupoid G. For any a, b ∈ G, we

have that a � b = (a|∗acod ∧ bdom)(acod ∧ bdom∗|b) in IS(G) and finally that a �

b = a(a�abb�)b = ab in IG(IS(G)). That is, the products are exactly the same in

IG(IS(G)) as they are in G and thus IG(IS(G)) = G.

We will now demonstrate this result by giving an example of an inverse semigroup

and then calculating its corresponding inductive groupoid.

Example 6.4.2. Consider the following inverse semigroup (S,�) (semigroup (5,415)

of the smallsemi package of GAP [7]):

� 1 2 3 4 5

1 1 1 1 1 1

2 1 1 4 1 2

3 1 5 1 3 1

4 1 2 1 4 1

5 1 1 3 1 5

It is the case that S is the only non-commutative inverse semigroup of order 5 contain-

ing a non-idempotent element. We note that idempotents of S are E(S) = {1, 4, 5}.
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It is routine to check that the inverses of each element in S are

1� = 1, 2� = 3, 3� = 2, 4� = 4, and 5� = 5.

We note that 3dom = 3� 3′ = 3� 2 = 5, 3cod = 3′ � 3 = 2� 3 = 4, 2dom = 4, and

2cod = 5. The associated inductive groupoid, then, has

– Objects: {1, 4, 5}

– (Non-identity) Arrows: {2 : 4→ 5, 3 : 5→ 4}

And has the visual appearance

1©1
))

4©
2
**

4
))

5©
3

jj 5
uu

We note that the order on this groupoid is trivial. N



Chapter 7

Double Inductive Groupoids

In this chapter, we will introduce the notion of a double inductive groupoid, a double

categorical version of the inductive groupoids introduced in the preceding chapter.

Much like the preceding chapter, we will define constructions of double inverse semi-

groups, and vice-versa, to establish an isomorphism between the category of double

inductive groupoids with double inductive functors and the category of double inverse

semigroups and double semigroup homomorphisms. We will then characterise double

inverse semigroups using this isomorphism.

7.1 Double Inductive Groupoids

Recall that, in a category, there exists a one-to-one correspondence between the iden-

tity arrows and objects. In a double category, there are two such correspondences:

• Between the horizontal identity double cells of a double category and its vertical

arrows.

• Between the vertical identity double cells of a double category and its horizontal

arrows.

Recall that after introducing double categories, it was presented as an example that,

given a double category, one can consider two natural categories: one of which having

vertical arrows as objects with double cells as morphisms with horizontal composition

and the other having horizontal arrows as objects with double cells as morphisms with

vertical composition. It is through these two naturally induced categories that we will

hereafter identify the vertical arrows of a double category with double cells that serve

as identities for horizontal composition and identify the horizontal arrows with those

52
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double cells that serve as identities for vertical composition. We may now make the

following definition:

Definition 7.1.1. A double inductive groupoid, denoted DIG,

G = (Obj(G),Ver(G),Hor(G),Dbl(G),≤,.)

is a double groupoid (i.e., a double category in which every vertical and horizontal

arrow is an isomorphism and each double cell is an isomorphism with respect to both

the horizontal and vertical composition) such that

(i) (Ver(G),Dbl(G)) is an inductive groupoid.

• We denote the composition in this inductive groupoid – the horizontal

composition from Dbl(G) – with ◦. We denote the partial order on this

groupoid as ≤ . If e and f are horizontal identities (vertical arrows), we

denote their meet as e ∧h f. For a cell α ∈ Dbl(G) and a vertical arrow

e ∈ Ver(G) such that e ≤ αhdom, we denote the horizontal restriction of α

by e by (e∗|α). Similarly, if e is a vertical arrow such that e ≤ αhcod, we

denote the horizontal corestriction of α by e by (α|∗e).

(ii) (Hor(G),Dbl(G)) is an inductive groupoid.

• We denote the composition in this inductive groupoid – the vertical compo-

sition from Dbl(G) – with •. We denote the partial order on this groupoid

as . . If e and f are vertical identities (horizontal arrows), we denote their

meet as e ∧v f. For a cell α ∈ Dbl(G) and a horizontal arrow e ∈ Hor(G)

such that e . αvdom, we denote the horizontal restriction of α by e by

[e∗|α]. Similarly, if e is a horizontal arrow such that e . αvcod, we denote

the horizontal corestriction of α by e by [α|∗e].

(iii) If a, b are double cells, f ′, g′ are horizontal arrows and f, g are vertical arrows,

the following laws about restrictions and corestrictions preserving composition

hold:
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(a)
(
a • b|∗f • g

)
=
(
a|∗f

)
•
(
b|∗g

)
.

(b)
[
a ◦ b|∗f ′ ◦ g′

]
=
[
a|∗f ′

]
◦
[
b|∗g′

]
.

(c)
(
f • g∗|a • b

)
=
(
f ∗|a

)
•
(
g∗|b

)
.

(d)
[
f ′ ◦ g′∗|a ◦ b

]
=
[
f ′∗|a

]
◦
[
g∗|b

]
.

The rule
(
a • b|∗f • g

)
=
(
a|∗f

)
•
(
b|∗g

)
, visually:

//

•

��

(
a|∗f
)

f•

��//

•

��

(
b|∗g
)

g•

��//

=

//

•

��

(
a•b|∗f•g

)
f•g•

��//

(iv) If e, f, g and h are horizontal arrows and e′, f ′, g′ and h′ are vertical arrows, the

following laws about composition preserving meets hold:

(a) (e ∧v f) ◦ (g ∧v h) = (e ◦ g) ∧v (f ◦ h).

(b) (e′ ∧h f ′) • (g′ ∧h h′) = (e′ • g′) ∧h (f ′ • h′).

The rule (e ∧h f) • (g ∧h h) = (e • g) ∧h (f • h), visually:

e•

��

f•

��

g•

��

∧h

h•

��

=

e∧hf•

��

g∧hh•

��

(v) If e and g are horizontal arrows, e′ and g′ are vertical arrows and each of f, h, f ′

and h′ are objects, the following laws about restrictions and corestrictions pre-

serving meets hold:

(a) (e|∗f) ∧v (g|∗h) = (e ∧v g|∗f ∧v h).

(b) [e′|∗f ′] ∧h [g′|∗h′] = [e′ ∧h g′|∗f ′ ∧h h′].
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(c) (e∗|f) ∧v (g∗|h) = (e ∧v g∗|f ∧v h).

(d) [e′∗|f ′] ∧h [g′∗|h′] = [e′ ∧h g′∗|f ′ ∧h h′].

The rule (e|∗f) ∧v (g|∗h) = (e ∧v g|∗f ∧v h), visually:

(e|∗f)
//

∧v

f

(g|∗h)
// h

= (e∧vg|∗f∧vh)
// f ∧v h

(vi) If a is a double cell, f a horizontal arrow, g a vertical arrow and x an object

such that f . avcod, g ≤ ahcod and x = fhcod∧ gvcod, then the following law

about commuting restrictions and corestrictions holds:

([a|∗f ]|∗[g|∗x]) = [(a|∗g)|∗(f |∗x)]

With similar quantifications, the laws about commuting restrictions and core-

strictions are:

(a) ([a|∗f ]|∗[g|∗x]) = [(a|∗g)|∗(f |∗x)].

(b) [(a|∗g)|∗(f |∗x)] = ([a|∗f ]|∗[g|∗x]).

(c) ([x∗|g]∗|[f ∗|a]) = [(x∗|f)∗|(g∗|a)].

(d) [(x∗|f)∗|(g∗|a)] = ([x∗|g]|[f ∗|a]).

The rule ([a|∗f ]|∗[g|∗x]) = [(a|∗g)|∗(f |∗x), visually:

//

�� ��

g

��

a ≥

// gvcod

f
//

.

fhcod x= fhcod ∧ gvcod.

≤
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(vii) If e, f, g and h are vertical and horizontal arrows, the following law about com-

muting meets holds:

(e ∧h f) ∧v (g ∧h h) = (e ∧v g) ∧h (f ∧v h).

Note that this is exactly saying that vertical and horizontal meets satisfy middle-

four interchange.

(viii) If e, f are vertical arrows and e′, f ′ are horizontal arrows, the following laws

about domains and codomains preserving meets hold:

(a) (e ∧h f)vdom = evdom ∧h fvdom.

(b) (e ∧h f)vcod = evcod ∧h fvcod.

(c) (e′ ∧v f ′)hdom = e′hdom ∧v f ′hdom.

(d) (e′ ∧v f ′)hcod = e′hcod ∧v f ′hcod.

The rule (e ∧h f)vdom = evdom ∧h fvdom, visually:

A

e

��

B

f

��

A ∧h B
e∧hf

��

(ix) If a is a double cell, e a vertical arrow and e′ a horizontal arrow, then the follow-

ing laws about domains and codomains preserving restrictions and corestrictions

hold:

(a) (a|∗e)vdom = (avdom|∗evdom).

(b) (a|∗e)vcod = (avcod|∗evcod).

(c) (e∗|a)vdom = (evdom∗|avdom).

(d) (e∗|a)vcod = (evcod∗|avcod).

(e) [a|∗e′]hdom = [ahdom|∗e′hdom].

(f) [a|∗e′]hcod = [ahcod|∗e′hcod].
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(g) [e′∗|a]hdom = [e′vdom∗|ahdom].

(h) [e′∗|a]hcod = [e′hcod∗|ahcod].

The rules (a|∗e)vdom = (avdom|∗evdom) and (a|∗e)hdom = (ahdom|∗ehdom),

visually:

��

(a|∗e)

(avdom|∗evdom)
//

e

��

(ahdom|∗ehdom)
//

�

7.2 Double Inductive Groupoids to Double Inverse Semigroups

Construction 7.2.1. Given a double inductive groupoid

G = (Obj(G),Ver(G),Hor(G),Dbl(G)),

we construct a double inverse semigroup DIS(G) = (S,},�) as follows:

– Its elements are the double cells of G; S = Dbl(G).

– For any a, b ∈ S, define

a} b = (a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

– For any a, b ∈ S, define

a� b = [a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b] ♦

Note that these are indeed inverse semigroup operations, by Theorem 6.2.4. It

remains, however, to show that middle-four is satisfied. We now verify that this is
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the case, first employing the definitions of } and � :

(a} b)� (c} d)

=1

[
a} b

∣∣∣∗(a} b)vcod ∧v (c} d)vdom
]
•
[
(a} b)vcod ∧v (c} d)vdom∗

∣∣∣c} d]
=2

[
(a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

∣∣∣∗(a} b)vcod ∧v (c} d)vdom
]

•
[
(a} b)vcod ∧v (c} d)vdom∗

∣∣∣(c|∗chcod ∧h dhdom) ◦ (chcod ∧h dhdom∗|d)
]

We can now apply the definition of }, the fact that (co)domains preserve composition

in a double groupoid and then, finally, Axiom (iv) to manipulate the (duplicate inner)

identities in the above (co)restrictions:

(a} b)vcod ∧v (c} d)vdom

=
(

(a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)
)

vcod

∧v
(

(c|∗chcod ∧h dhdom) ◦ (chcod ∧h dhdom∗|d)
)

vdom

=
(

(a|∗ahcod ∧h bhdom)vcod ◦ (ahcod ∧h bhdom∗|b)vcod
)

∧v
(

(c|∗chcod ∧h dhdom)vdom ◦ (chcod ∧h dhdom∗|d)vdom
)

=(iv)

(
(a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom

)
◦
(

(ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom
)

Plugging this result into Equation 2, we get

=3

[
(a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

∣∣∣∗
((a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom)

◦ ((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)
]

•
[
((a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom)

◦ ((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)∗

∣∣∣
(c|∗chcod ∧h dhdom) ◦ (chcod ∧h dhdom∗|d)

]
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As a reminder of where we are in this calculation, we provide the following picture,

showing that we have established the above product as a vertical product of horizontal

products (that is, horizontally (co)restrict and then vertically (co)restrict):

We apply Axiom (iii):

=4

{[
(a|∗ahcod ∧h bhdom)

∣∣∣∗
((a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom)

]
◦
[
(ahcod ∧h bhdom∗|b)

∣∣∣∗
((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)

]}
•
{[

((a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom)∗

∣∣∣
(c|chcod ∧h dhdom)

]
◦
[
((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)∗

∣∣∣
(chcod ∧h dhdom∗|d)

]}
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We now apply middle-four of the double cells in G :

=5

{[
(a|∗ahcod ∧h bhdom)

∣∣∣∗
((a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom)

]
•
[
((a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom)∗

∣∣∣
(c|∗chcod ∧h dhdom)

]}
◦
{[

(ahcod ∧h bhdom∗|b)
∣∣∣∗

((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)
]

•
[
((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)∗

∣∣∣
(chcod ∧h dhdom∗|d)

]}
The preceding calculations broke up the horizontal (co)restrictions in the sense that

we now have four double cells instead of the original two. This allowed us to use the

middle-four interchange law on the following cells:

We now “reassemble” the four double cells. Note now the following (the axiom
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from which the line follows is in the subscript of the equals sign):

[
(a|∗ahcod ∧h bhdom)

∣∣∣∗(a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhcod)vdom)
]

=(ix)

[
(a|∗ahcod ∧h bhdom)

∣∣∣∗
(avcod|∗(ahcod ∧h bhdom)vcod) ∧v (cvdom|∗(chcod ∧h dhdom)vdom)

]
=(v)

[
(a|∗ahcod ∧h bhdom)

∣∣∣∗
(avcod ∧v cvdom|∗(ahcod ∧h bhdom)vcod ∧v (chcod ∧h dhdom)vdom)

]
=(viii)

[
(a|∗ahcod ∧h bhdom)

∣∣∣∗
(avcod ∧v cvdom|∗

(ahcodvcod ∧h bhdomvcod) ∧v (chcodvdom ∧h dhdomvdom))
]

=(vii)

[
(a|∗ahcod ∧h bhdom)

∣∣∣∗
(avcod ∧v cvdom|∗

(ahcodvcod ∧v chcodvdom) ∧h (bhdomvcod ∧v dhdomvdom))
]

=(viii)

[
(a|∗ahcod ∧h bhdom)

∣∣∣∗
(avcod ∧v cvdom|∗(avcod ∧v cvdom)hcod ∧h (bvcod ∧v dvdom)hdom)

]
=(vi)

(
[a|∗avcod ∧v cvdom]

∣∣∣∗
[ahcod ∧h bhdom|∗(avcod ∧v cvdom)hcod ∧h (bvcod ∧v dvdom)hdom]

)
=(v)

(
[a|∗avcod ∧v cvdom]

∣∣∣∗
[ahcod|∗(avcod ∧v cvdom)hcod] ∧h [bhdom|∗(bvcod ∧v dvdom)hdom]

)
=(ix)

(
[a|∗avcod ∧v cvdom]

∣∣∣∗
[a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom

)
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Similarly, we have the following three facts:

[
((a|∗ahcod ∧h bhdom)vcod ∧v (c|∗chcod ∧h dhdom)vdom)∗

∣∣∣(c|∗chcod ∧h dhdom)
]

=
(

[avcod ∧v cvdom∗|c]
∣∣∣∗[avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom

)
,

[
(ahcod ∧h bhdom∗|b)

∣∣∣∗((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)
]

=
(

[a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom∗

∣∣∣[b|∗bvcod ∧v dvdom]
)
,

and

[
((ahcod ∧h bhdom∗|b)vcod ∧v (chcod ∧h dhdom∗|d)vdom)∗

∣∣∣(chcod ∧h dhdom∗|d)
]

=
(

[avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom∗

∣∣∣[bvcod ∧v dvdom∗|d]
)
.

Then equation 5 above becomes

=6

{(
[a|∗avcod ∧v cvdom]

∣∣∣∗
[a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom

)
•
(

[avcod ∧v cvdom∗|c]
∣∣∣∗

[avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom
)}

◦
{(

[a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom∗

∣∣∣
[b|∗bvcod ∧v dvdom]

)
•
(

[avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom∗

∣∣∣
[bvcod ∧v dvdom∗|d]

)}
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We now apply Axiom (iii):

=7

(
[a|∗avcod ∧v cvdom] • [avcod ∧v cvdom∗|c]

∣∣∣∗
([a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom)

• ([avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom)
)

◦
(

([a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom)

• ([avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom)∗

∣∣∣
[b|∗bvcod ∧v dvdom] • [bvcod ∧v dvdom∗|d]

)
We now apply the definition of � :

=8

(
a� c

∣∣∣∗([a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom)

• ([avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom)
)

◦
(

([a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom)

• ([avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom)∗

∣∣∣b� d)
Note now that (again, the justifying axioms are in the subscripts):

([a|∗avcod ∧v cvdom]hcod ∧h [b|∗bvcod ∧v dvdom]hdom)

• ([avcod ∧v cvdom∗|c]hcod ∧h [bvcod ∧v dvdom∗|d]hdom)

=(iv) ([a|∗avcod ∧v cvdom]hcod • [avcod ∧v cvdom∗|c]hcod)

∧h ([b|∗bvcod ∧v dvdom]hdom • [bvcod ∧v dvdom∗|d]hdom)

=(ix) ([a|∗avcod ∧v cvdom] • [avcod ∧v cvdom∗|c])hcod

∧h ([b|∗bvcod ∧v dvdom] • [bvcod ∧v dvdom∗|d])hdom

= (a� c)hcod ∧h (b� d)hdom

The preceding calculations have successfully reassembled the four double cells into

the two in which we are interested. That is, we have constructed the following:



64

Therefore, equation 10 becomes

=9

(
a� c

∣∣∣∗(a� c)hcod ∧h (b� d)hdom
)

◦
(

(a� c)hcod ∧h (b� d)hdom∗

∣∣∣b� d)
=10 (a� c)} (b� d).

Having established that the middle-four interchange law is satisfied, we have finally

proved the following:

Theorem 7.2.2. If G is a double inductive groupoid, then DIS(G), as constructed in

Construction 7.2.1, is a double inverse semigroup.

7.3 Double Inverse Semigroups to Double Inductive Groupoids

Construction 7.3.1. Given a double inverse semigroup (S,},�), we construct a

double inductive groupoid

DIG(S) = (DIG(S)0,Ver(DIG(S)),Hor(DIG(S)),Dbl(DIG(S)))

as follows:

– DIG(S)0 = E(S,}) ∩ E(S,�).
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– Ver(DIG(S)) = E(S,}).

– Hor(DIG(S)) = E(S,�).

– Dbl(DIG(S)) = S(},�). Let a, b be any two double cells.

• We define ahdom = a } a} and ahcod = a} } a. Whenever ahcod = bhdom,

the horizontal composite is defined as a◦ b = a} b. Define a horizontal partial

order ≤ by a ≤ b if and only if a = e ◦ b = e} b for some vertical arrow e. The

horizontal meet of two vertical arrows e and f is defined to be e∧h f = e} f.

Note that since vertical arrows are contained in S(},�), this≤ is also a partial

order on the vertical arrows E(S,}). If we have a vertical arrow e ≤ ahdom,

we define (a|∗e) = a} e and if e ≤ ahcod, we define (e∗|a) = e} a.

• We define avdom = a�a� and avcod = a��a. Whenever avcod = bvdom, the

vertical composite is defined as a • b = a� b. Define a vertical partial order .

by a . b if and only if a = e•b = e�b for some horizontal arrow e. The vertical

meet of two horizontal arrows e and f is defined to be e∧v f = e�f. Note that

since horizontal arrows are contained in S(},�), this . is also a partial order

on the horizontal arrows E(S,�). If we have a horizontal arrow e . avdom,

we define [a|∗e] = a� e and if e . avcod, we define [a∗|e] = e� a. ♦

Note. • It is not immediately obvious that the intersection E(S,�) ∩ E(S,})

is non-empty. It may be the case that there are no shared idempotents. This

however is not the case: if a ∈ S, then it follows that (a � a�) } (a � a�)} ∈

E(S,}), since a } a} is idempotent for any a ∈ S (the product of an element
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with its inverse is idempotent). We also note that

[(a� a�)} (a� a�)}]� [(a� a�)} (a� a�)}]

= [(a� a�)� (a� a�)]} [(a� a�)� } (a� a�)}]

= (a� a�)} [(a} � a}�)� (a} � a}�)]

= (a� a�)} (a} � a}�)

= (a� a�)} (a� a�)}.

Therefore, (a� a�)} (a� a�)} ∈ E(S,�) and E(S,�) ∩ E(S,}) 6= ∅.

• It is known from the previous chapter (Lawson’s construction) that this con-

struction is such that

(Ver(DIG(S)),Dbl(DIG(S))) and (Hor(DIG(S)),Dbl(DIG(S)))

are both inductive groupoids with the orders, meets, and (co)restrictions defined

as above.

• We have a groupoid structure in both directions and the horizontal and vertical

compositions are defined by the horizontal and vertical semigroup products,

respectively. These semigroup products satisfy middle-four and thus so do the

compositions. That is, if S is a double inverse semigroup, then DIG(S), as

constructed, is indeed a well defined double groupoid.

There will now be some lemmas showing that this construction satisfies all addi-

tional axioms of the DIGs.

Recall that any double inverse semigroup is commutative by Kock’s Theorem

3.2.7; in the following proofs, there will be repeated use of the commutativity of S.

Lemma 7.3.2. Let S(},�) be a double inverse semigroup and let a, b ∈ S. Then

(i) (a} b)� = a� } b�.

(ii) (a� b)} = a} � b}.



67

Proof. We will prove only (i); that (ii) is true follows analogously. We first note that,

by repeated use of middle-four,

(a� } b�)� ((a} b)� (a� } b�)) = (a� } b�)� ((a� a�)} (b� b�))

= (a� � (a� a�))} (b� � (b� b�))

= a� � b�.

Similarly,

(a} b)� (a� } b�)� (a} b) = a} b.

Then, by the definition of semigroup inverse, (a} b)� = a� } b�.

Lemma 7.3.3. Let S(},�) be a double inverse semigroup and let a, b ∈ S. Then

(i) (a� � a)} (b� � b) = (a} b)� � (a} b).

(ii) (a} } a)� (b} } b) = (a� b)} } (a� b).

Proof. We prove only (i); that (ii) is true follows analogously. Now, by the preceding

proposition and middle-four in S,

(a} b)� � (a} b) = (a� } b�)� (a} b)

= (a� � a)} (b� � b)

Lemma 7.3.4. Let (S,�) be a commutative inverse semigroup and let a, b ∈ S. Then

If a� � a = b� � b, then (a� b)� � (a� b) = a� � a = b� � b.

Proof. Because each of the fact that a� � a = b� � b, the commutativity of S and
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the fact that a� � a is idempotent,

(a� b)� � (a� b) = (b� � a�)� (a� b)

= (a� � a)� (b� � b)

= (a� � a)� (a� � a)

= a� � a.

The preceding lemmas show that composition in the constructed DIG(S) is well-

defined. We now check that all the axioms of double inductive groupoids are satisfied.

For the following lemmas, we will prove only the first statement, since all other

statements in each lemma follow analogously.

Lemma 7.3.5. (Axiom (iii)) If a, b are double cells, f ′, g′ are horizontal arrows

(idempotents with respect to �) and f, g are vertical arrows (idempotents with respect

to } in DIG(S)), the following laws about restrictions and corestrictions preserving

composition hold:

(a)
(
a • b|∗f • g

)
=
(
a|∗f

)
•
(
b|∗g

)
.

(b)
[
a ◦ b|∗f ′ ◦ g′

]
=
[
a|∗f ′

]
◦
[
b|∗g′

]
.

(c)
(
f • g∗|a • b

)
=
(
f ∗|a

)
•
(
g∗|b

)
.

(d)
[
f ′ ◦ g′∗|a ◦ b

]
=
[
f ′∗|a

]
◦
[
g∗|b

]
.

Proof. By the commutativity of � and middle-four in S, we have that

(a • b|∗f • g) = (a� b)} (f�)

= (a} f)� (b} g)

= (a|∗f) • (b|∗g)

Lemma 7.3.6. (Axiom (iv)) If e, f, g and h are horizontal arrows (idempotents with

respect to �) and e′, f ′, g′ and h′ are vertical arrows (idempotents with respect to })

in in DIG(S), the following laws about composition preserving meets hold:
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(a) (e ∧v f) ◦ (g ∧v h) = (e ◦ g) ∧v (f ◦ h).

(b) (e′ ∧h f ′) • (g′ ∧h h′) = (e′ • g′) ∧h (f ′ • h′).

Proof. By definition of ∧v and ◦ along with middle-four in S,

(e ∧v f) ◦ (g ∧v h) = (e� f)} (g � h)

= (e} g)� (f } h)

= (e ◦ g) ∧v (f ◦ h).

Corollary 7.3.7. (Axiom (vii)) If each of e, f, g and h are objects (idempotents with

respect to both � and }) in DIG(S), the following law about commuting meets holds:

(e ∧h f) ∧v (g ∧h h) = (e ∧v g) ∧h (f ∧v h).

Proof. Note that (e ∧h f) ∧v (g ∧h h) = (e ∧h f)� (g ∧h h) = (e ∧h f) • (g ∧h h) and

e(e∧v g)∧h (f ∧v h) = (e∧v g)} (f ∧v h) = (e∧v g) ◦ (f ∧v h) and apply the preceding

lemma.

Lemma 7.3.8. (Axiom (v)) If e and g are horizontal arrows (idempotents with respect

to �), e′ and g′ are vertical arrows (idempotents with respect to }) in DIG(S) and

each of f, h, f ′ and h′ are objects (idempotents with respect to both � and }), the

following laws about restrictions and corestrictions preserving meets hold:

(a) (e|∗f) ∧v (g|∗h) = (e ∧v g|∗f ∧v h).

(b) [e′|∗f ′] ∧h [g′|∗h′] = [e′ ∧h g′|∗f ′ ∧h h′].

(c) (e∗|f) ∧v (g∗|h) = (e ∧v g∗|f ∧v h).

(d) [e′∗|f ′] ∧h [g′∗|h′] = [e′ ∧h g′∗|f ′ ∧h h′].

Proof. By the definition of horizontal restrictions and vertical meet, along with the
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fact that S satisfies middle-four:

(e|∗f) ∧v (g|∗h) = (e} f)� (g } h)

= (e� g)} (f � h)

= (e ∧v g|∗f ∧v h).

Lemma 7.3.9. (Axiom (vi)) If a is a double cell, f a horizontal arrow (idempotent

with respect to �), g a vertical arrow (idempotent with respect to }) and h an object

in DIG(S) such that h ≤ fhdom ∧ gvdom (recall the image from Axiom (vi)), the

following law about commuting restrictions and corestrictions holds:

([a|∗f ]|∗[g|∗h]) = [(a|∗g)|∗(f |∗h)]

Similarly quantified, here are all laws about commuting restrictions and corestrictions

that must hold:

(a) ([a|∗f ]|∗[g|∗h]) = [(a|∗g)|∗(f |∗h)].

(b) [(a|∗g)|∗(f |∗h)] = ([a|∗f ]|∗[g|∗h]).

(c) ([h∗|g]∗|[f ∗|a]) = [(h∗|f)∗|(g∗|a)].

(d) [(h∗|f)∗|(g∗|a)] = ([h∗|g]∗|[f ∗|a]).

Proof. By the definition of corestrictions and by the middle-four in S, we have that

([a|∗f ]|∗[g|∗h]) = ([a|∗f ])} ([g|∗h])

= (a� f)} (g � h)

= (a} g)� (f } h)

= (a|∗g)� (f |∗h)

= [(a|∗g)|∗(f |∗h)].



71

Lemma 7.3.10. (Axiom (viii)) If e, f are vertical arrows (idempotents with respect

to }) and e′, f ′ are horizontal arrows (idempotents with respect to �) in DIG(S), the

following laws about domains and codomains preserving meets hold:

(a) (e ∧h f)vdom = evdom ∧h fvdom.

(b) (e ∧h f)vcod = evcod ∧h fvcod.

(c) (e′ ∧v f ′)hdom = e′hdom ∧v f ′hdom.

(d) (e′ ∧v f ′)hcod = e′hcod ∧v f ′hcod.

Proof. By the definition of horizontal meet and vertical codomain together with

middle-four in S,

(e ∧h f)vdom = (e} f)vdom

= (e} f)� (e} f)�

= (e} f)� (e� } f�)

= (e� e�)} (f � f�)

= evdom} fvdom

= evdom ∧h fvdom.

Lemma 7.3.11. (Axiom (ix)) If a is a double cell, e is a vertical arrow (idempotent

with respect to }) and e′ is a horizontal arrow (idempotent with respect to �) in

DIG(S), then the following laws about domains and codomains preserving restrictions

and corestrictions hold:

(a) (a|∗e)vdom = (avdom|∗evdom).

(b) (a|∗e)vcod = (avcod|∗evcod).

(c) (e∗|a)vdom = (evdom∗|avdom).

(d) (e∗|a)vcod = (evcod∗|avcod).
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(e) [a|∗e′]hdom = [ahdom|∗e′hdom].

(f) [a|∗e′]hcod = [ahcod|∗e′hcod].

(g) [e′∗|a]hdom = [e′vdom∗|ahdom].

(h) [e′∗|a]hcod = [e′hcod∗|ahcod].

Proof. By the definition of vertical domain, middle-four in S and the definition of

horizontal restriction,

(a|∗e)vdom = (a} e)vdom

= (a} e)� (a} e)�

= (a} e)� (a� } e�)

= (a� a�)} (e� e�)

= avdom} evdom

= (avdom|∗evdom).

Having proved all of the preceding lemmas, we have proved the following theorem:

Theorem 7.3.12. If S(},�) is a double inverse semigroup, then DIG(S), as con-

structed in Construction 7.3.1, is a double inductive groupoid.

7.4 An Isomorphism of Categories

In the previous chapter, we constructed an isomorphism of categories between the

category of inductive groupoids with inductive functors and the category of inverse

semigroups with semigroup homomorphisms. The goal of this section is to establish

an analogous result; we will find an isomorphism of categories between the category

of double inductive groupoids with double inductive functors and the category of

double inverse semigroups and double semigroup homomorphisms. We first make the

following two natural definitions:
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Definition 7.4.1. Let G and G ′ be double inductive groupoids. A double inductive

functor f : G → G ′ is a double functor whose vertical arrow, horizontal arrow and

double cell functions preserve all partial orders and meets. �

Definition 7.4.2. Let (S,},�) and (S ′,}′,�′) be double inverse semigroups. A

double semigroup homomorphism ϕ : S → S ′ is a function ϕ : S → S ′ such that, for

all a, b ∈ S, (a� b)ϕ = aϕ� bϕ and (a} b)ϕ = aϕ} bϕ. �

We will make use of a simple, yet important, observation which follows directly

from the definition of double semigroup homomorphism.

Note. Let ϕ : (S,},�) → (S ′,}′,�′) be a double semigroup homomorphism. If

e ∈ E(S,�) is an idempotent with respect to �, then eϕ = (e� e)ϕ = eϕ�′ eϕ and

eϕ ∈ E(S ′,�′) and thus E(S,�) ⊆ E(S,�)ϕ. Similarly, E(S,}) ⊆ E(S,})ϕ. This

tells us that ϕ preserves idempotents in both directions.

We will also make some notational choice for ease of discussion:

Notation. We denote the category of double inductive groupoids with double induc-

tive functors as DIG and we denote the category of double inverse semigroups with

double semigroup homomorphisms as DIS.

We may now state and prove the following theorem:

Theorem 7.4.3. There exists an isomorphism of categories between DIG and DIS.

Proof. We define a pair of functors

DIG
F

,,
DIS

F ′
ll

as follows:

(i) F : DIG→ DIS :
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• On objects: For any double inductive groupoid G, define GF = DIS(G), as

defined in Construction 7.2.1. Recall that DIS(G) = Dbl(G) with products

defined, for any a, b ∈ DIS(G), as

a} b = (a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

a� b = [a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]

• On arrows: For any double inductive functor f : G → G ′, define fF :

DIS(G)→ DIS(G ′) to be the double cell function fd of f.

Since the arrow function of F returns the double cell function of a double func-

tors, functoriality is immediate from the definition of functor composition. One

also notes that, for any a, b ∈ DIS(G), we have

(a� b)fF = (a� b)fd

=
(

[a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]
)
fd

=
(

[a|∗avcod ∧v bvdom]
)
fd •′

(
[avcod ∧v bvdom∗|b]

)
fd

(fd preserves composition)

= [afd|∗(avcod ∧v bvdom)fd] •′ [(avcod ∧v bvdom)fd∗|bfd]

(fd preserves (co)restrictions)

= [afd|∗avcodfd ∧v bvdomfd] •′ [avcodfd ∧v bvdomfd∗|bfd]

(fd preserves meets)

= [afd|∗afdvcod ∧v bfdvdom] •′ [afdvcod ∧v bfdvdom∗|bfd]

(fd preserves (co)domains)

= afd �′ bfd

= afF �′ bfF.

Similarly, we have that (a } b)fF = afF }′ bfF. That is, fF is justifiably a

double semigroup homomorphism.
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(ii) F ′ : DIS→ DIG :

• On objects: For any double inverse semigroup S, define SF ′ = DIG(S), as

defined in Construction 7.3.1. Recall that DIG(S) has the following data:

– DIG(S)0 = E(S,�) ∩ E(S,}).

– Ver(DIG(S)) = E(S,}).

– Hor(DIG(S)) = E(S,�).

– Dbl(DIG(S)) = S(�,}).

• On arrows: For any double semigroup homomorphism ϕ : S → S ′ between

double inverse semigroups, define ϕF ′ : DIG(S) → DIG(S ′) to be the

double (inductive) functor with the following data:

– An object function defined to be ϕ restricted by E(S,�) ∩ E(S,}).

– A vertical arrow function defined to be ϕ restricted by E(S,}).

– A horizontal arrow function defined to be ϕ restricted by E(S,�).

– A double cell function defined to be ϕ.

The above defined object, vertical arrow and horizontal arrow functions are

well-defined due to the fact that double semigroup homomorphisms preserve

idempotents, as made clear in the note at the beginning of this section. As with

the preceding functor, the functoriality of F ′ follows immediately from the the

definition of functor composition. The work is in showing that ϕF ′ is actually

inductive (since ϕF ′ is either ϕ or a restriction of ϕ, we will write only ϕ) :

(a) We check that ϕ preserves all partial orders. If a, b ∈ DIG(S) with a ≤ b,

then by definition a = e◦ b = e} b for some e ∈ Ver(DIS) = E(S,}). Since
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ϕ is a homomorphism, then,

a = e} b

=⇒ aϕ = (e} b)ϕ

=⇒ aϕ = eϕ}′ bϕ

=⇒ aϕ = eϕ ◦′ bϕ

Since ϕ preserves idempotents, eϕ is indeed a vertical arrow and thus aϕ ≤′

bϕ in DIG(S ′). Similarly, if a . b in DIG(S), then aϕ .′ bϕ in DIG(S ′).

(b) Since ϕ preserves the orders, ϕ preserves all meets.

(c) Since ϕ preserves all orders and all meets, ϕ preserves all (co)restrictions.

It can then be said that the functor defined in the arrow function of F ′ is

justifiably inductive.

We now check that these two functors compose to the identity functors. We will

first make a note about the arrow functions:

If f is any inductive functor, then fF is the double cell function and thus fFF ′ is a

functor whose double cell function is indeed just the the double cell function of f. The

object, vertical arrow and horizontal arrow functions of fFF ′ are also just the object,

vertical arrow and horizontal functions of f. For example, the vertical arrow function

of fFF ′ is the restriction of fF to the idempotents of the horizontal operation in the

given double inverse semigroup. However, these idempotents are exactly the vertical

arrows and thus the restriction of fF by the horizontal idempotents is exactly the

vertical arrow function of f.

If ϕ is any double semigroup homomorphism, then the double cell function of ϕF ′

is just ϕ. Then ϕF ′F = ϕ, since ϕF ′F is defined to be the double cell function of

ϕF ′.

Having checked that the arrow functions compose to the identity, we check the
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object functions:

We know by our construction that the elements of a double inverse semigroup S

are exactly the double cells of DIG(S) and that the double cells of a double inductive

groupoid G are exactly the elements of DIS(G). Then it is the case that the elements

of DIS(DIG(S)) are exactly the elements of S and the double cells of DIG(DIS(G))

are exactly the double cells of G.

We show that the products of elements in DIS(DIG(S)) are the same as those in

S. If a, b ∈ S, we consider the product a� b. In DIS(DIG(S)), this product is

[a|∗avcod ∧v bvdom] • [avcod ∧v bvdom]

= a� (a� � a)� (b� b�)� (a� � a)� (b� b�)� b

= a� ((a� � a)� (a� � a))� ((b� b�)� (b� b�))� b

= (a� a� � a)� (b� b� � b)

= a� b.

Similarly, a } b in DIS(DIG(S)) is the same as in S. Since the elements and the

products are the same, we can say that DIS(DIG(S)) = S.

It will finally be shown that the composites of double cells in GFF ′ = DIG(DIS(G))

are the same as those in G. We will then be done since vertical and horizontal arrows

can be considered as identity double cells for horizontal and vertical composition,

respectively. For any double cells a, b ∈ G, if the composite a • b exists, we know that

a� b = [a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]

in the double inverse semigroup DIS(G). However, since the composite a • b exists,

avcod = bvdom and so this product in DIG(DIS(G)), then, becomes

[a|∗avcod] • [bvdom∗|b] = (a� a� � a) • (b� b� � b)

= a • b.
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Similarly, a◦ b in DIG(DIS(G)) is the same as in G and we are done. Since the double

cells (and thus horizontal and vertical arrows) and the composites are the same, we

can say that DIG(DIS(G)) = G.

7.5 Special Properties of Double Inverse Semigroups and Double

Inductive Groupoids

Naturally, after having established an isomorphism of categories between DIS and

DIG, one would like to use this isomorphism as a means of formulating a character-

isation of double inverse semigroups.

Lemma 7.5.1. Let (S,�,}) be a double inverse semigroup. For all a, b ∈ E(S,�)∩

E(S,}),

a� b = a} b.

Proof. We first note that, since a and b are idempotent with respect to � and },

a = a� a = a} a

and

b = b� b = b} b.

Also,

(a} b)� (a} b) = (a� a)} (b� b)

= a} b.
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Using these facts and the commutativity in a double inverse semigroup,

a� b = (a� b)} (a� b)

= (a� b)} (b� a)

= (a} b)� (b} a)

= (a} b)� (a} b)

= a} b.

Our isomorphism allows us to think of the partial orders, meets and (co)restrictions

as semigroup products. Because, on the objects, these semigroup products coincide,

we have the following corollary:

Corollary 7.5.2. Let G be a double inductive groupoid. For all objects a, b ∈ Obj(G),

a ≤ b if and only if a . b

and

a ∧h b = a ∧v b.

Note. We can consider both the set of vertical (horizontal) arrows and objects in

a double inductive groupoid as posetal categories, whose objects are the vertical

(horizontal) arrows or objects of the groupoid, respectively, and there is a unique

arrow u → v if and only if u ≤ v (u . v). In the following discussions, whenever we

write Obj(G), Ver(G) or Hor(G), we are considering them as posetal categories.

Having established that the two order structures of a double inductive groupoid

coincide on its objects, we seek to further study and describe the relationship between

the order on the objects and the orders on both the horizontal and vertical arrows.

Let G be a double inductive groupoid and let S be its corresponding double inverse
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semigroup. Given a double cell (element of S) a, it will have the following form:

A
a�a�

//

a}a}
��

a

B

a}}a
��

C
a��a

// D

For convenience, let ah = a� a�, av = a} a}. By commutativity, a now looks like

A
ah //

av •
��

a

B

av•
��

C ah
// D

Note that

A = ahhdom = ahhcod = B = avvdom = avvcod = D = ahvcod = C.

Then, for every double cell a ∈ Dbl(G), a has the following form:

A
ah //

av •
��

a

A

av•
��

A ah
// A

Let G be a double inductive groupoid and let A be an object of G. Then there is

a natural collection of double cells

(A)S =

a ∈ Dbl(G)

∣∣∣∣∣
A

a

ah //

av •
��

A

av•
��

A ah
// A


Though definitely a double groupoid, it is not immediately obvious that AS is a

double inductive groupoid. That is, it could be possible that meets or (co)restrictions

may not be well defined on AS (the meet of two arrows in AS may not be in AS,

for example). The following proposition, however, allows us to properly call these
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one-object double inductive groupoids:

Proposition 7.5.3. For each object A ∈ Obj(G), the above-defined collection AS is

a one-object double inductive groupoid.

Proof. These objects are subobjects of double groupoids are thus double groupoids

themselves. We now check the following properties:

(i) Vertical meets of horizontal arrows in AS are again horizontal arrows in AS.

(ii) Horizontal meets of vertical arrows in AS are again vertical arrows in AS.

(iii) Horizontal (co)restrictions of double cells in AS by vertical arrows in AS are

again double cells of AS.

(iv) Vertical (co)restrictions of double cells in AS by horizontal arrows in AS are

again double cells of AS.

To prove (i), let f and g be horizontal arrows in AS. We must show that the

horizontal domain and codomain of f ∧v g are both A. This is true since, in G, we

have the property that meets preserve domains and codomains. That is,

(f ∧v g)hdom = fhdom ∧v ghdom = A ∧v A = A.

Similarly, (f ∧v g)hcod = A.

The proof of (ii) is similar to that of (i).

To prove (iii), we note that if we have a cell a ∈ AS and a vertical arrow e ≤ ahdom

in AS, then the domain of the restriction (e∗|a) is e. Since e ∈ AS, the domain and

codomain of e are both A. Because all four corners of a double cell are equal, all four

corners of (e∗|a) has all four corners A and thus lives inside of AS.

The proof of (iv) is similar to that of (iii).

These one-object double groupoids, then, contain all of its meets and (co)restrictions.

Because they are subobjects of a double inductive groupoid, they must satisfy all the

axioms of a double inductive groupoid. Therefore, these one-object double groupoids

are indeed one-object double inductive groupoids.
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By our isomorphism of categories, we can consider these one-object double induc-

tive groupoids as a special class of double inverse semigroups whose operations share

only one idempotent. The following theorem provides two ways of characterising

these one-object double inductive groupoids:

Theorem 7.5.4. If A is a single-object double inductive groupoid, then the following

statements are equivalent:

(a) A is an Abelian group.

(b) A has only one vertical and horizontal arrow.

(c) The two natural partial order relations on the cells of A coincide.

Proof. (a) ⇒ (b) and (a) ⇒ (c) : If A is an Abelian group, we can consider A as a

double inverse semigroup whose operations are both the group operation of A. Group

operations are inverse semigroup operations which have exactly one idempotent. Each

operation, then, has one idempotent and they are both the same. That is, there is

only one vertical and horizontal arrow: this idempotent. Since the inverse operations

of A are the same, we have that a ≤ b if and only if a = eA } b = eA � b if and only

if a . b and thus the order relations must coincide on the cells (elements) A.

(b)⇒ (a) : If there is only one vertical and horizontal arrow, every double cell is com-

posable in either direction. More specifically, each of the horizontal/vertical restric-

tions are trivial and thus the inverse semigroup operations reduce to the compositions

in the double inductive groupoid associated with A. The compositions, however are

group operations and A is therefore an Abelian group by Eckmann-Hilton.

(c) ⇒ (b) : Obviously, since the order relations coincide, so do the two meets. Note

that if u and v are vertical arrows, then they are horizontal idempotents. Also, since

we are in a single-object double inductive groupoid, all restrictions and corestric-

tions of vertical arrows are trivial and the semigroup products when restricted to the
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vertical arrows are simply the groupoid compositions. If u ≤ v, then

u = u} v

⇒ u} u = u} v

⇒ u ◦ u = u ◦ v

⇒ u = v.

The last step follows from cancellation in a groupoid. We can then conclude that there

is only one vertical arrow, call it u. Similarly, there is only one horizontal arrow, call

it f.

The preceding theorem becomes provides an especially useful characterisation.

This becomes obvious with the following:

Proposition 7.5.5. A single-object double inductive groupoid A has only one vertical

arrow and one horizontal arrow.

Proof. We first recall that in any inductive groupoid, horizontal composition of hori-

zontal arrows preserves the vertical meets. That is,

(f ◦ g) ∧v (f ′ ◦ g′) = (f ∧v f ′) ◦ (g ∧v g′).

We note that a∧v b = a implies that a . b and thus preservation of meets in this way

implies the following law about preserving the vertical partial order:

f . f ′, g . g′ implies f ◦ g . f ′ ◦ g′

Of course, in a single-object double inductive groupoid, all arrows have the same

domain and codomain and are thus guaranteed to be composable.

We now show that horizontal inverses preserve the vertical partial order. Let f . g

be horizontal arrows. We can use our isomorphism of categories to consider A as a

double inverse semigroup, so that g = e� f for some horizontal arrow e. Recall that
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inverses of one operation distribute over the other and thus (e})�(e}) = (e�e)} = e}

(horizontal arrows are idempotents with respect to the vertical operation). Then e}

is a horizontal arrow and therefore, when we take the horizontal inverses of f and g :

g} = (e� f)} = e} � f} . f}.

Since the horizontal arrows form a meet-semilattice, there must be a minimal

element with respect to ., call it x. That is, if f is a horizontal arrow, then x . f.

Then by the above discussion, x−1 . f−1. Trivially, f . f and x−1 . x−1 and thus

by preservation of composition,

x−1 ◦ f . f−1 ◦ f = id

and

id = x−1 ◦ x . x−1 ◦ f.

That is, the only horizontal arrow is id. Similarly, there is only the vertical identity

arrow, 1, and this proposition is proved.

We can then apply the preceding two theorems to prove:

Theorem 7.5.6. Single-object double inductive groupoids are exactly Abelian groups.

If A ∈ Obj(G) and a ∈ (A)S and e ≤ A is an object (i.e., is both a horizontal and

vertical arrow), then we know that the unique restriction is in (e)S and has the form

e
e}ah //

e}av
��

e}a

e

e}av
��

e
e}ah

// e
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We now consider the following map between (A)S and (e)S :

ϕ : (A)S → (e)S

a 7→ e} a

If a, b ∈ (A)S, then

(a� b)ϕ = e} (a� b)

= (e� e)} (a� b)

= (e} a)� (e} b)

= (a)ϕ� (b)ϕ.

That is, ϕ : (A)S → (e)S is an Abelian group homomorphism.

Definition 7.5.7. If C and V are categories, a V−valued presheaf of C is a con-

travariant functor

F : Cop → V. �

The above discussion gives us a Ab−valued presheaf

S : Obj(G)op → Ab.

On objects we can send A to (A)S and send an arrow A ≤ B to the Abelian group

homomorphism induced (as described above) between (B)S and (A)S.

The discussion in this section provides a construction proving the following result:

Proposition 7.5.8. Arbitrary double inverse semigroups can be made into a Ab-

valued presheaf over a meet-semilattice.

A stronger and more desirable result, however, would be to establish an iso-

morphism of categories between the category of double inductive groupoids and

presheaves of Abelian groups over meet-semilattices. We do that now. We first,
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however, introduce the notion of a morphism between two presheaves of Abelian

groups on meet-semilattices:

Definition 7.5.9. A morphism of presheaves of Abelian groups on meet-semilattices

P : Lop → Ab and P ′ : (L′)op → Ab is an ordered pair

(f, {ϕA}A∈L) : P → P ′

consisting of an order and meet preserving function f : L→ L′ and a family of group

homomorphisms {ϕA} indexed by the objects of A such that, for any objects A ≤ B

in L, the following diagram commutes:

AP

ϕA

��

BPoo

ϕB

��

(Af)P ′ (Bf)P ′oo

�

To ease the following proof, we make a notational remark:

Notation. We denote the category of presheaves of Abelian groups on meet-semilattices

with presheaf morphisms by AbPSMS.

Finally, we may prove the following:

Theorem 7.5.10. The categories AbPSMS and DIG (and thus DIS) are isomor-

phic.

Proof. We define a pair of functors

DIG
F
..

AbPSMS
F ′

ll

as follows:

(i) F : DIG→ AbPSMS :
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• On objects: If G is a double inductive groupoid, define GF to be the

presheaf P of Abelian groups on the meet-semilattice Obj(G) as detailed

above (i.e., given by the restrictions).

• On arrows: Given a double inductive functor f : G → G ′, define a morphism

of presheaves (g, {ϕA}A∈Obj(G)) with

– g = f0, the object function of f.

– ϕA = fd|AP , the double cell function of f restricted to those cells who

have all corners A.

This is indeed functorial, since the double cell function of f preserves both

composition and identities. This is also indeed an arrow in the AbPSMS. First,

f0 preserves all meets and orders and thus g does. For any objects A ≤ B in

Obj(G), we know that there is a unique Abelian group homomorphism BP →

AP and thus the required diagram commutes.

(ii) F ′ : AbPSMS→ DIG :

• On objects: If P : Lop → Ab is a presheaf of Abelian groups on a meet-

semilattice, define a double inductive groupoid G = PF ′ with the following

data:

– Objects: Obj(G) = L

– Vertical/horizontal arrows: Ver(G) = Hor(G = {eAP : A ∈ L} (the

identities of the Abelian groups in the image of P ).

– Double cells: Dbl(G) =
∐

A∈LAP, the disjoint union of all Abelian

groups in the image of P.

• On arrows: If (f, {ϕA}A∈L) : P → P ′ is a morphism of presheaves, define

a double inductive functor g = (f, {ϕA}A∈L)F ′ : PF ′ → P ′F ′ with the

following data:

– An object function: g0 = f.
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– A vertical/horizontal arrow function: gv = gh = gd|Ver=Hor, the double

cell function restricted to the vertical and horizontal arrows (the group

identities).

– A double cell function: gd = ϕ defined by gd(a) = ϕahdomvdom(a) (eval-

uate each a using the group homomorphism whose index is the object

in the four corners of a).

This is functorial, since it is composed of group homomorphisms. That is,

composition (the group products) and identities are preserved. Also,

(a) This preserves all partial orders, since f is an order preserving map.

(b) Similarly, f preserves meets, so this functor does, too.

(c) Since F ′ preserves all orders and all meets, F ′ preserves all (co)restrictions.

It can then be said that the functor defined in the arrow function of F ′ is

justifiably inductive.

We now check that these two functors compose to the identity functors.

Object functions: Given a presheaf P : Lop → Ab, we check that PF ′F = P. First,

PF ′ is the double inductive groupoid with objects L, vertical/horizontal arrows the

identity morphisms and double cells the disjoint union of the Abelian groups AP for

A ∈ L. When we send this inductive groupoid into presheaves, we have a presheaf

P ′ : Lop → Ab. Note that P and P ′ are presheaves of Abelian groups on the same

meet-semilattice. We know the two presheaf structures are given by the restrictions in

the corresponding one-object double inductive groupoids. These restrictions, however,

are unique and thus PF ′F = P ′ = P. Conversely, suppose that we are given a double

inductive groupoid G. We check that GFF ′ = G. We know that GF is a presheaf

P : Obj(G)op → Ab. Sending this presheaf into double inductive groupoids, then,

gives us a double inductive groupoid with objects Obj(G), vertical/horizontal arrows

all identities and double cell the disjoint union of the groups in the image of P. It was

shown before, however, that a double inductive groupoid consists solely of cells that
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lie inside of these groups and have only identities for vertical and horizontal arrows.

It is clear, then, that this is the same double inductive groupoid, or that GFF ′ = G.

Arrow Functions: The arrow functions compose almost trivially to the identity,

since each double functor is defined from a presheaf morphism using isomorphisms

(equality), and vice-versa, and knowing that the object functions compose to the

identity, ensuring that the structures we are moving through are the same.

Having defined two functors whose composition is the identity functor in either

way, we have completed the proof.

We have shown that double inverse semigroups are exactly presheaves of Abelian

groups on meet-semilattices. In particular, we have seen that double inverse semi-

groups consist of a collection of idempotents on which the horizontal and vertical

operations coincide. Add to this Kock’s result that double inverse semigroups and we

have the following result:

Theorem 7.5.11. Double inverse semigroups are exactly commutative inverse semi-

groups.

The following example constructs a double inverse semigroup from a chain of

Abelian groups. This example provides a good example of how the above properties of

double inductive groupoids together with the isomorphisms described can be applied

to construct double inverse semigroups.

Example 7.5.12. Let

A0 = Z1, A1 = Z2, . . . , An−1 = Z2n−1 , An = Z2n

be a sequence of Abelian groups with identities e0, e1, . . . , en such that ei is the identity

of Ai for i ∈ {0, 1, . . . , n}. For any 0 ≤ m ≤ n (as integers), note that Am = Z2m . For

any 0 ≤ m ≤ n, we denote the generator of Am as am. We recall that each Abelian
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group can be represented as

Am = (em)S =


em

aa−1=em //

em

��

a

em
em

��
em em

// em

∣∣∣∣∣a ∈ Am = Z2m


Define a partial order on the identities above by e1 ≤ e2 ≤ . . . ≤ en. We show there

is a presheaf structure on this sequence of Abelian groups over this meet-semilattice.

That is, em ≤ em′ implies the existence of an Abelian group homomorphism ϕm′,m :

Am′ → Am. We note that em ≤ em′ implies that m ≤ m′ (as integers). Then there is

therefore a well defined quotient map

ϕm′,m : Z2m
′ −→ Z2m

ajm′ 7−→ aj(mod 2m)
m

and, since the composite of any of these ϕ maps is again a ϕ map, there is indeed a

presheaf structure of this sequence of Abelian groups defined on the meet-semilattice

of identities.

We can then use our isomorphism to make a double inductive groupoid G with

the following data:

– Objects: Obj(G) = {e0, e1, . . . , en}.

– Arrows: Ver(G) = Hor(G) = {e0, e1, . . . , en}.

– Double cells: Dbl(G) =
∐n

i=0Ai, the disjoint union of the underlying sets of the Ai.

Let a ∈ Dbl(G). Then a ∈
∐n

i=0Ai and thus a ∈ Am for some 0 ≤ m ≤ n and has

the form

em
aa−1=em //

em

��

a

em
em

��
em em

// em

as detailed above. It then makes sense to represent each a ∈ Dbl(G) as an ordered

pair (a, em), which will tell us which Abelian group in the disjoint union a belongs
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to. Horizontal composition of double cells (a, em) and (b, ej) is defined whenever

ahcod = em = ej = ahdom and is thus the product in the Abelian group Am = Aj.

Vertical composition is defined in the same way. Since all idempotents are shared

ones, it must be that the compositions coincide.

If (a, em) is a double cell of G and ej ≤ em = ahdom, then by the existence of

horizontal restrictions, there is a unique double cell ((ej∗|a), ej) ≤ (a, em). We will

do only horizontal since the horizontal/vertical operations on the shared idempotents

– all of them – coincide and therefore the horizontal/vertical orders and restrictions

do, too. Consider the quotient homomorphism ϕm,j : Am → Aj. Then (a, em)ϕm,j =

(aϕm,j, ej). The restrictions, then, are given by ((ej∗|a), ej) = (aϕm,j, ej). We can

write a = akm as some power of the generator am of Am. We then can write this

restriction more specifically as (a
k (mod 2j)
j , ej).

We may now define a double inverse semigroup, S. Let S =
∐n

i=0Ai and (a, em), (b, ej) ∈

S, be double cells such that ej ≤ em. Write a = akm and b = a`j as powers of generators.

Then the meet em ∧h ej = ej. We also note that the homomorphism ϕj,j : Aj → Aj

is the identity homomorphism, for any 0 ≤ j ≤ n. Define both products (since the

horizontal/vertical restrictions and operations coincide as seen above) as

a� b = a} b = ((a|∗em ∧h ej), em ∧h ej) ◦ ((em ∧h ej∗|b), em ∧h ej)

= ((a|∗ej), ej) ◦ ((ej∗|b), ej)

= (aϕm,j ◦ bϕj,j, ej ◦ ej)

= (akmϕm,j ◦ a`jϕj,j, ej)

= (a
k (mod 2j)
j ◦ a`j, ej)

= (a
`+k (mod 2j)
j , ej)

where ◦ is the operation in the group Aj. N
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Conclusion

This thesis first introduced the reader to the notion of double semigroups. We then

explored some known results about the commutativity in double semigroups. In

particular, we saw that all double inverse semigroups are commutative. We then in-

troduced the notion of a double category and showed that a known construction of

inverse semigroups with zero from categories, when generalised to constructing double

inverse semigroups from double categories, does not provide a non-trivial correspon-

dence. The notion of inductive groupoids is introduced and a known construction of

inverse semigroups from inductive groupoids, and vice-versa, is explored.

In an effort to generalise this construction to double inverse semigroups, we defined

double inductive groupoids and defined constructions of double inverse semigroups

from these double inductive groupoids, and vice-versa. We showed that these con-

structions are functorial in nature and admit an isomorphism of categories between

the category of double inductive groupoids with double inductive functors and the cat-

egory of double inverse semigroups and double semigroup homomorphisms. Using this

isomorphism, we defined a special class of single-object double inductive groupoids,

which are ultimately Abelian groups, and showed that any double inverse semigroup

can be seen as a presheaf of Abelian groups on a meet semi-lattice, namely the shared

idempotents of its two operations. Using these correspondences, we concluded that

double inverse semigroups are exactly commutative inverse semigroups.
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