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1. Introduction

As introduced in SGA4 [1], a topological étendue E is a topos which is
locally a topological space: there is some object S ∈ E together with a
unique epimorphism S // //1 such that E/S is equivalent to the topos of
sheaves on a topological space. By common convention (see, e.g., [11]), we
consider the more general localic étendues, hereafter simply called étendues,
in which locales are used in lieu of topological spaces.

Rosenthal [23] showed that the category of sheaves on a left-cancellative
site is an étendue and, conversely, Kock and Moerdijk [13] showed that any
étendue is equivalent to the topos of sheaves on a left-cancellative site. This
presentation of general étendues has motivated the subsequent work eventu-
ally leading to this paper.

Left-cancellative categories arise naturally in the study of cohomology
generalized from the context of groups to the context of inverse semigroups:
the cohomology of an inverse semigroup [14] is the same as the cohomol-
ogy of a certain left-cancellative category [18, 19]. In particular, the rela-
tionship between these cohomologies relies on a correspondence between
certain actions of an inverse semigroup and the actions on its associated left-
cancellative category. The study of inverse semigroups can also be done via
ordered groupoids as per the celebrated Ehresmann-Schein-Nambooripad
Theorem [5, 21, 22, 24]: the category of inverse semigroups (and semi-
group homomorphisms) is equivalent to the category of inductive groupoids
(and inductive functors). The Ehresmann-Schein-Nambooripad Theorem
has been nicely presented with its applications to inverse semigroup theory
in Lawson’s book [15]. It has since been extended to various natural contexts
[3, 4, 8, 9, 25]. Motivated by ordered groupoids being special types of induc-
tive groupoids and by the role of inverse semigroups acting on presheaves
in inverse semigroup theory [20], Lawson and Steinberg [17] engaged in
this study of generalized group cohomology using inverse semigroups in the
more general context of ordered groupoids.

Lawson and Steinberg were successful in their investigation in that they
gave a first link between the topos-theoretic view coming from sheaves on
left-cancellative sites (coming again from the relationship between coho-
mologies) and the ordered-groupoid-theoretic view coming from the appro-
priate sheaves on what they call Ehresmann sites; Ehresmann sites are or-
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dered groupoids equipped with what they call an Ehresmann topology, fam-
ilies of order ideals reminiscent of Grothendieck topologies. They give a
notion of sheaves on Ehresmann sites and prove:

1. Each site with monic maps can be constructed from some Ehresmann
site.

2. Each étendue is equivalent to the category of sheaves on some Ehres-
mann site.

To accomplish this, Lawson and Steinberg define a pair of functors

L : oGpd→ lcCat

and
G : lcCat→ oGpd

between the category of ordered groupoids (with ordered functors) and the
category of left-cancellative categories (with functors). They then show that
there is a natural transformation η : Id⇒ LG with the property that for each
left-cancellative category C, the component ηC : C → LG(C) is an equiva-
lence of categories. Building off of this equivalence, Lawson and Steinberg
establish a one-to-one correspondence between covering sieves on a left-
cancellative site (C, J) and the covering sieves on the corresponding left-
cancellative site (LG(C), JTJ ) such that the category of sheaves on (C, J) is
equivalent to the category of sheaves on (LG(C), JTJ ).

The purpose of Sections 2 – 5 of this paper is primarily to strengthen
Lawson and Steinberg’s result by answering the natural question “Is there a
corresponding natural transformation κ : GL ⇒ Id whose components are
equivalences?” Lawson and Steinberg provide a notion of such a natural
transformation. They show that when G has maximal objects in the sense
that each object is less than or equal to a maximal object, the arrow κG is
a retract. In order to study these transformations in more detail and ob-
tain a 2-adjunction and biequivalence between suitable categories of ordered
groupoids and left cancellative categories, we will view ordered groupoids as
a special kind of category objects in an ambient category. Strictly speaking,
this ambient category can be taken to be Pos, the category of posets. How-
ever, as Pos is a subcategory of Cat, the category of categories, this means
that we may also view them as a special kind of double categories. Double
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categories, as first introduced by Ehresmann [6], have emerged as a conve-
nient and powerful way to organize and study the interaction between two
different types of morphism on the same objects. Our thinking of ordered
groupoids as double categories allows us to tap into the double-categorical
toolbox; in particular, thinking of ordered groupoids as double categories al-
lows us to observe that for an arbitrary ordered groupoid G the component
κG of the natural transformation κ : GL ⇒ Id given by Lawson and Stein-
berg can be viewed as a weak equivalence, analogous to those defined in
[2] (although neither the category Pos nor the category Cat is regular), and
this class of weak equivalences is part of a Quillen model structure on the
category of double categories [7].

Pushing this further, we would like to say that we can establish an equiva-
lence of categories lcCat ' oGpd. However, since the components of the
natural transformations η and κ are only (weak) equivalences, rather than
isomorphisms, we will need to consider oGpd and lcCat as 2-categories
to do this. We denote these 2-categories by oGpd and lcCat. The 2-structure
of lcCat is inherited from Cat: the 2-cells are natural transformations. To
describe oGpd as a 2-category requires more work in choosing the correct
notion of 2-cells. We will call our choice of 2-cells Λ-transformations, and
they form a combination of the traditional horizontal and vertical transforma-
tions between double functors. The existence of Λ-transformations depends
on the fibration (restriction) property of ordered groupoids giving the hom
double category DblCat(G,H) itself the structure of an ordered groupoid.
This way we obtain a 2-adjunction,

Theorem 5.1. The 2-functors L and G define a 2-adjunction,

oGpd ' lcCat.

To obtain a biequivalence the components of η and κ need to have weak
inverses. In general this is not the case for κ. However, as noted in [17], the
ordered groupoids in the image of the functor G have the property that for
each object X there is a maximal object X̂ such that X ≤ X̂ . Restricting
the 2-adjunction above to ordered groupoids with this property yields the
desired biequivalence,
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Corollary 5.2. The 2-functors L and G define a 2-adjoint biequivalence,

oGpdmax ' lcCat.

Section 6 of this paper contains applications to the study of sheaves on
Ehresmann sites and further extends the work of Lawson and Steinberg [17]
in two significant ways:

1. Lawson and Steinberg show that there is an isomorphism of categories

PreSh(G) ∼= PreSh(L(G)).

They also show that this isomorphism restricts properly to sheaves
with the chosen topologies.

Furthermore, since any equivalence of categories induces an equiva-
lence between the corresponding presheaf categories, we have

PreSh(C) ' PreSh(LG(C)),

and by combining these equivalences we obtain,

PreSh(G(C)) ' PreSh(C) and PreSh(G) ' PreSh(GL(G)).

We show that the equivalence PreSh(G(C)) ' PreSh(C) also restricts
properly to sheaves with the chosen topologies. Finally, while Lawson
and Steinberg were able to establish an equivalence between categories
of sheaves on the left-cancellative Grothendieck site side, our double-
categorical perspective allows us to complete the picture and establish
an equivalence between the categories of sheaves on the Ehresmann
site side.

Proposition 6.5.

(a) (Lawson and Steinberg) The category of sheaves on an Ehres-
mann site (G, T ) is equivalent to the category of sheaves on
(L(G), JT ).

(b) The category of sheaves on a left-cancellative site (C, J) is equiv-
alent to the category of sheaves on (G(C), TJ).
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2. We give an appropriate notion of morphism between Ehresmann sites
which allows us to take the equivalences between categories of sheaves
at the object level to an equivalence between the larger 2-categories of
Grothendieck sites and of Ehresmann sites.

This is motivated by Karazeris’ [12] result that functors between Gro-
thendieck sites give rise to geometric morphisms precisely when they
are covering preserving and covering flat, and we prove the corre-
sponding result for double functors between ordered groupoids:

Theorem 6.15. A double functor M : (G, T ) → (G ′, T ′) gives rise
to a geometric morphism Sh(G ′, T ′) → Sh(G, T ) if and only if it is
covering preserving and covering flat.

It is such functors that we call morphisms of Ehresmann sites which
give a 2-category of Ehresmann sites that features in the following
biequivalence.

Theorem 6.16. The functors G and L induce a 2-adjoint biequiva-
lence

lcGsite ' Esitemax.

The Comparison Lemma in [13] gives sufficient conditions on a mor-
phism of sites so that it induces an equivalence between the corresponding
categories of sheaves. As a final application, this paper adapts Kock and
Moerdijk’s conditions to the context of ordered groupoids, we are able to
express and prove an analogous result for a morphism of Ehresmann sites:

Theorem 6.22 (Comparison Lemma for Ehresmann Sites). LetM : (G, T )→
(G ′, T ′) be a morphism of Ehresmann sites. If M is locally full, locally faith-
ful, and locally surjective, then the functor M∗ : Sh(G ′, T ′) → Sh(G, T ) is
full and faithful. If further M is co-continuous, then M∗ is an equivalence.

This now allows one to use Ehresmann sites as a representation for étendues
in a way that is completely analogous to the use of left-cancellative Grothendieck
sites.
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2. Ordered Groupoids as Double Categories

In order to describe the correspondence between ordered groupoids and left-
cancellative categories in more detail, we first introduce a new way of repre-
senting ordered groupoids in terms of double categories.

Definition 2.1. An ordered groupoid is a category G in which all arrows are
invertible and such that

1. There is a partial order relation on the arrows which extends to the
objects via the identity arrows;

2. The order is preserved by taking inverses and composition: if a ≤ b
then a−1 ≤ b−1 and if a ≤ b and c ≤ d then ac ≤ bd provided these
composites are defined;

3. When f : A → B and A′ ≤ A there is a unique arrow f ′ : A′ → B′

such that f ′ ≤ f . We also write f |A′ for f ′ and call it the restriction of
f to A′.

Note that the first and second conditions in this definition imply that if
f ≤ g and f : A → B and g : C → D then A ≤ C and B ≤ D. Hence, we
can also view this as an internal groupoid

G1 ×G0 G1
m // G1

i // G1

t //

s
// G0uoo

in the category of partially ordered sets with an additional property corre-
sponding to the last requirement given above: the domain arrow G1

s //G0

is a fibration as functor between posetal categories. It follows from the
groupoid symmetry that the target arrow t is an opfibration. So we observe
that ordered groupoids have both domain and range restriction.

Another way to view this last diagram is as a double category G where
the vertical arrows give the poset structure and the horizontal arrows give the
groupoid structure. Double cells have the following form

X
g
//

•
��

≤

Y

•
��

X ′
g′
// Y ′

(1)
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And this encodes that X ≤ X ′, Y ≤ Y ′ and g ≤ g′. Note that in this
notation, the fact that s : G1 → G0 is a fibration corresponds to the statement
that for each diagram

X

•
��

X ′
g′
// Y ′

there is a unique diagram (1).
The morphisms between ordered groupoids are usually taken to be or-

dered functors: functors that preserve the order relation. These correspond
precisely to double functors between the double categories just described.
We write oGpd for the category of ordered groupoids, considered as double
categories with double functors as arrows.

3. Lawson’s Correspondence Revisited

In [16] Lawson introduced a correspondence between ordered groupoids and
left-cancellative categories; i.e., categories in which all arrows are monomor-
phisms. We write lcCat for the category of left-cancellative categories with
functors as morphisms.

Lawson introduced functors oGpd → lcCat and lcCat → oGpd. We
begin by rewriting these functors in our terminology.

3.1 The Functors L and G

The functor L : oGpd→ lcCat is defined as follows. For an ordered groupoid
G, the left-cancellative category L(G) has as objects those of G. An arrow
A → B in L(G) is a formal composite of a horizontal arrow in G with a
vertical arrow in G:

A h // B′ • // B
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where h is a horizontal arrow in G and B′ • //B is a vertical arrow in G.
Composition uses the restriction operation in G,

A h // B′

•
��

k|B′ //

≤

C ′′

•
��

B k // C ′

•
��

C

so the composition is given by A
k|B′h //C ′′ • //C . (Note that this is

unitary and associative by the uniqueness of the restrictions.)
Conversely, the functor G : lcCat → oGpd is defined as follows. For

a left-cancellative category C, the ordered groupoid G(C) has subobjects in
C as objects; i.e., they are equivalence classes of arrows m : A → B and
[m : A → B] = [m′ : A′ → B] if there is an isomorphism k : A

∼→ A′ in C
such that

A
k
∼

//

m
��

A′

m′~~

B

commutes. The horizontal arrows in G(C) are equivalence classes of spans,

[m,n] : [m]→ [n]

The equivalence relation is defined so that [m,n] = [m′, n′] if and only if
there is an isomorphism h making the following diagram commute:

A
m

yy

n

%%
ho

��

B C

A′
m′

ee

n′

99

Composition of [k,m] and [m′, n] is defined when [m] = [m′]; i.e., when
there is an isomorphism h such that m′h = m, giving rise to a diagram

k

��
m

��

h
∼

//

m′
��

n

��
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in C. The composition is then [k]
[k,nh]

// [nh] = [n] .
The vertical arrows are given by the order relation on subobjects: there

is a unique vertical arrow
[n] • // [n′]

if there is an arrow h in C such that n = n′h; i.e., [n] ≤ [n′] as subobjects.
The order relation on arrows is defined by Lawson as: [m,n] ≤ [m′, n′]

if there is an arrow h in C such that the diagram

A
m

vv

n

((
h

��

B C

A′m′

hh

n′

66

(2)

commutes. (Note that this h is unique if it exists.) This implies then that
[m] ≤ [m′] and [n] ≤ [n′]. So double cells in G(C),

[m]

•
��

[m,n]
//

≤

[m]

•
��

[m′]
[m′,n′]

// [n′]

correspond to diagrams of the form (2) in C. Since there is at most one
double cell for any frame of horizontal and vertical arrows, the horizontal
and vertical composition of double cells is determined by the composition of
the horizontal and vertical arrows.

3.2 The Composition LG

We now describe the results of composing the functors L and G in our termi-
nology. For a left-cancellative category C, the category LG(C) has as objects
subobjects in C: [m : A→ B].

The arrows in LG(C) are constructed as

[m]
[m,n′]

// [n′] • // [n]
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and this corresponds to a diagram

A′
m

yy n′ %%

h // A
n
��

B C

in C.
So an arrow [h] : [m : A′ → B] → [n : A → C] is represented by an

arrow h : A′ → A. Furthermore,(
[m]

[h]
// [n]

)
≡
(

[m′]
[h′]
// [n′]

)
if and only if there are isomorphisms k and ` that make the following dia-
gram commute,

m

vv

h //

o k

��

` o

��

n

((

m′

hh

h′
// n′

66

Composition of [m]
[h1]
// [n] and [n′]

[h2]
// [p] is defined when there is

an arrow k as in the diagram

m

��

h1 //

n
��

k //

n′
��

h2 //

p

��

and the composition is
[h2kh1] : [m]→ [p].

The categories C and LG(C) are not isomorphic, but as observed by
Lawson [16, Theorem 2.3.1], there is a functor

ηC : C → LG(C)

giving an equivalence of categories. (It is defined on objects by A 7→ [1A],
and on arrows by (h : A→ B) 7→ ([h] : [1A]→ [1B]) and note that

[m : A→ B] ∼= [1A : A→ A]
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and ηC defines an isomorphism

C(A,B)
∼−→ LG(C)([1A], [1B]).)

Note that the ηC define a natural transformation

η : 1lcCat ⇒ LG.

3.3 The Composition GL

For the other composition, GL : oGpd→ oGpd, let G be an ordered groupoid.
Then the objects of GL(G) are subobjects in L(G), hence equivalence classes,

[A h // B′ • // B],

where h is a horizontal arrow in G (and therefore invertible). Furthermore,

[A h //B′ • //B] = [A′ h′ //B′ • //B]

if and only if there is an isomorphism k : A
∼−→ A′ such that h′k = h.

Note that in this case each equivalence class has a canonical representative,
(B′ • // B) . We will denote this object by

(B′, B).

Horizontal arrows in GL(G) become then equivalence classes of spans
of horizontal arrows in G,[

B′ A
hoo k // C ′

]
: (B′, B)→ (C ′, C)

Since h and k are invertible, this span is equivalent to

B′ B′
1Boo kh−1

// C ′.

So a horizontal arrow (B′, B) → (C ′, C) is given by a horizontal arrow
h : B′ → C ′ in G. The vertical arrows and the double cells in GL(G) are
obtained as follows: there is a (unique) vertical arrow (B′, B) • //(D′, D)
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if and only ifB = D and there is a vertical arrow B′ • //D′ in G. Similarly,
double cells in GL(G) are of the form,

(B′, D)

•
��

≤

h // (C ′, E)

•
��

(D′, D)
k
// (E ′, E)

where
B′

•
��

≤

h // C ′

•
��

D′
k
// E ′

is a double cell in G.
Lawson introduced an ordered functor κG : GL(G) → G which corre-

sponds to the following double functor with the same name:

• on objects, κG(B′, B) = B′;

• on horizontal arrows, κG((B′, B)
h→ (C ′, C)) = (B′

h→ C ′);

• on vertical arrows, κG((B′, B) • //(D′, B)) = (B′ • //D′ );

• on double cells, κG maps the cell

(B′, B)

•

��

≤

h // (C ′, C)

•

��

(D′, D)
k
// (E ′, E)

in GL(G) to the cell

B′

•
��

≤

h // C ′

•
��

D′
k
// E ′

in G.
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Lawson showed that this is a deformation retract when the ordered groupoid
G has maximal elements. When considering the corresponding transforma-
tion with double functors as components, we can show that these compo-
nents have properties analogous to those of weak equivalences between in-
ternal categories in a regular category, as introduced in [2] in terms of effec-
tive descent maps. In [7] it was shown that these weak equivalences are part
of a Quillen model structure on the category of double categories, induced
by the regular epimorphism topology on the category of categories.

Definition 3.1. A functor between internal categories F : C → D in some
ambient category D is a weak equivalence if it satisfies the following two
conditions:

1. It is essentially surjective in the sense that the composition of the top
arrows in

C0 ×D0 D1
π2 //

π1
��

D1

s

��

t // D0

C0 F0

// D0

is of effective descent in D;

2. It is fully faithful in the sense that the following square is a pullback,

C1
F1 //

(s,t)
��

D1

(s,t)
��

C0 × C0 F0×F0

// D0 × D0

For D = Cat, the category of small categories, internal categories are
double categories and it was shown in [10] that a functor F : X → Y is
of effective descent if and only if the following induced functions of sets
are surjective: F0 : X0 → Y0, F1 : X1 → Y1 and F1 × F1 : X1 ×X0 X1 →
Y1 ×Y0 Y1.

Proposition 3.2. The double functor κG : GL(G) → G is a weak equiva-
lence of double categories.
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Proof. We first check that κG is essentially surjective on objects. So we need
to check that the induced functor tπ2 : GL(G)0 ×G0 G1 → G0 is of effective
descent.

• It is surjective on objects, because for any object B in G, κG(B,B) =
B.

• It is surjective on arrows, because the arrows in G0 are the vertical
arrows of G, and for any vertical arrow B • //C ,

κG ((B,C) • //(C,C)) = (B • //C).

• Finally, κG×κG : GL(G)1×GL(G)0 GL(G)1 → G1×G0 G1 is surjective,
since for any composable pair of vertical arrows in G, B • //C • //D ,

(κG × κG)
(
(B,D) • //(C,D) • //(D,D)

)
= (B • //C • //D) .

We note that κG is fully faithful because it is both order reflecting and order
preserving.

We would like to combine the results from this section in saying that the
functors L : oGpd → lcCat and G : lcCat → oGpd define an equivalence
of categories lcCat ' oGpd. However, since the components of the natural
transformations η : 1lcCat ⇒ LG are only equivalences of categories and the
component of κ : GL⇒ 1oGpd are at best retracts, rather than isomorphisms,
we will need to consider oGpd and lcCat as 2-categories to do this. We will
denote these 2-categories by oGpd and lcCat. The 2-structure of lcCat is
inherited from Cat: the 2-cells are natural transformation. To describe oGpd
as a 2-category we need to do more work as spelled out in the next section.

4. oGpd as a 2-Category

We clearly want the arrows of the 2-category oGpd to be double functors.
When constructing a 2-category from a double category one chooses usu-
ally either the horizontal or the vertical transformations as the 2-cells of
the resulting 2-category. The components of a horizontal transformation are
horizontal arrows and double cells in the codomain double category, so for

- 17 -



D. DEWOLF AND D. PRONK REPRESENTATIONS OF ETENDUES

ordered groupoids, all horizontal transformations are invertible. The com-
ponents of a vertical transformation are vertical arrows and double cells, so
there is a vertical transformation F ⇒v G : G → H if and only if F ≤ G.

However, because each ordered groupoid has a fibration as domain, we
obtain a third option. To describe this third option, first recall that for any
two double categories C and D, DblCat(C,D) can be viewed as a double
category with double functors as objects, horizontal transformations as hor-
izontal arrows, vertical transformations as vertical arrows and modifications
as double cells.

Proposition 4.1. For ordered groupoids G andH, the double category

DblCat(G,H)

is again an ordered groupoid.

Proof. We saw above that the vertical transformations simply encode the
order structure on the double functors and all horizontal transformations are
invertible.

We now describe what the modifications are in this double category. For
four double functors F,G,H,K : G → H with F ≤ H and G ≤ G and
horizontal transformations α : F

∼−→ G and β : H
∼−→ K, a modification

Θ,
F

α //

•
��

Θ

G

•
��

H
β
// K

is given by a family of double cells

FX
αX //

•
��

ΘX

GX

•
��

HX
βX
// KX

inH, indexed by objectsX in G, and satisfying certain naturality conditions.
However,H has only double cells of the form

∼ //

•
��

≤ •
��

∼
//
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Hence, each cell ΘX is the unique double cell encoding the fact that αX ≤
βX . So we may write

F α //

•
��

≤

G

•
��

H
β
// K

for Θ.
It remains to show that the domain arrow

s : DblCat(G,H)1
// DblCat(G,H)0

is a fibration. So suppose that F ≤ H and β : H ⇒h K. We construct β|F
as follows. For each object X in G, we have

FX

•
��

HX
βX
// KX

and we use the lifting property ofH to complete the square

FX

•
��

≤

βX |FX
// GX

•
��

HX
βX

// KX

We want to define (β|F )X = βX |FX , but in order for this to be well-defined,
we need to turn this assignment of G into a double functor. So consider a
horizontal arrow h : X → Y in G. We have by horizontal naturality that
Kh ◦ βX = βY ◦Hh, and we have the following double cells,

FX

•
��

≤

Fh // FY

•
��

≤

βY |FY
// GY

•
��

HX
Hh

// HY
βY

// KY
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So we see that in

FX

•
��

≤

βX |FX
// GX

•
��

HX
βX

// KX
Kh

// KY

the codomain of the lifting Kh|GX has codomain FY (since (Kh|GX) ◦
(βX |FX) = (Kh ◦ βX)|FX = (βY ◦Hh)|FX = (βY |FY ) ◦ Fh). So we may
define Gh = Kh|GX . Thus defined, G preserves identities and composition,
because the liftings are unique. We also see from the diagrams above that
Gh ◦ (βX |FX) = (βY |FY ) ◦ Fh.

For the definition of G on vertical arrows, suppose that X ≤ X ′. Then
we have the following composites of vertical arrows inH:

FX • // HX • // HX ′ and FX • // FX ′ • // HX ′

Hence the horizontal arrow HX ′
βX′ //KX ′ can be restricted to FX in two

ways:

FX

•
��

≤

βX′ |FX // G′X

•
��

FX

•
��

≤

βX |FX
// GX

•
��

FX ′

•
��

≤
βX′ |FX′

// GX ′

•
��

and HX

•
��

≤
βX

// KX

•
��

GX ′
βX′

// KX ′ HX ′
βX′

// KX ′

Hence, G′X = GX and GX • //GX ′ as required.
Finally, to define G on double cells, let

X

•
��

h //

≤

Y

•
��

X ′
h′
// Y ′

be a double cell in G. We calculate the restriction Kh′|GX in two different
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ways. First we take the following factorization,

GX

•
��

Gh //

≤

GY

•
��

KX

•
��

≤
Kh

// KY

•
��

KX ′
Kh′
// KY ′

This shows that Kh′|FX = Kh|FX = Gh. Now consider

GX

•
��

Gh′|GX
//

≤

GY

•
��

GX ′

•
��

≤
Gh′

// GY ′

•
��

KX ′
Kh′

// KY ′

This shows thatGh = Kh′|GX = Gh′|GX and hence we have the double cell

GX

•
��

≤

Gh // GY

•
��

GX ′
Gh′
// GY ′

as required.

In summary, we can apply our functor L to the ordered groupoid DblCat(G,H)
to obtain a left-cancellative category L (DblCat(G,H)). This allows us to
define the 2-category oGpd with ordered groupoids as objects and

oGpd(G,H) = L (DblCat(G,H)) .

This means that a 2-cell
(α,≤) : F ⇒ G

is a formal composite
F

∼
α
+3 G′ ≤ G ,
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where G′ : G → H is a double functor, α is a horizontal transformation
and ≤ denotes a vertical transformation as described above. We call such
a formal composite a Λ-transformation. Vertical composition of these Λ-
transformations is given by composition in L (DblCat(G,H)), using the fi-
bration property of the domain map.

To define horizontal composition note that since both horizontal and ver-
tical transformations allow for left and right whiskering, whiskering auto-
matically extends to Λ-transformations: Given ordered groupoids G, H and
K with double functors

G
F //

G
//H

H //

K
// K

and Λ-transformations (α,≤) : F ⇒ G and (β,≤) : H ⇒ K, we have that

(β,≤)F = (βF,≤) : HF ⇒ KF

and
H(α,≤) = (Hα,≤) : HF ⇒ HG.

We want to show that this gives rise to a well-defined notion of horizontal
composition. In the proof we will need the following results about horizontal
transformations between double functors of ordered groupoids.

Lemma 4.2. Let G,H and K be ordered groupoids with double functors

G
F //
G′ //

G
//H

H //
K′ //

K
// K

with horizontal transformations α : F ⇒ G′ and β : H ⇒ K ′ and vertical
transformations G′ ≤ G and K ′ ≤ K. Then we have the following restric-
tions in DblCat(G,K):

1. (βG)|HG′ = βG′.

2. (Kα)|K′F = K ′α.

Proof. Since the restrictions are unique, we need only to check that the as-
signed horizontal transformations fit. So let X be an object in G.
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For the first restriction, we need to check that the following is a well-
defined double cell in K,

HG′X

•
��

βG′X //

≤

K ′G′X

•
��

HGX
βGX

// K ′GX

This is a well-defined double cell by the vertical functoriality of β applied to
the arrow G′X • //GX .

For the second restriction, we need to check that the following is a well-
defined double cell in K,

K ′FX

•
��

K′αX //

≤

K ′G′X

•
��

KFX
KαX

// KG′X.

This follows from the horizontal functoriality of the vertical transformation
K ′ ≤ K, applied to the arrow FX

αX //G′X .

Proposition 4.3. Given ordered groupoids G,H, andK with double functors

G
F //

G
//H

H //

K
// K

and Λ-transformations (α,≤) : F ⇒ G and (β,≤) : H ⇒ K. Then,

(Kα,≤) · (βF,≤) = (βG,≤) · (Hα,≤)

where · denotes vertical composition.

Proof. Let X be an object of G. Then the component of K(α,≤) · (β,≤)F
at X is obtained by considering the following diagram in K:

HFX
βFX // K ′FX

•
��

KαX |K′FX // AX

•
��

KFX
KαX

// KG′X

•
��

KGX
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By Lemma 4.2, KαX |K′FX = K ′αX and hence, AX = K ′G′X . We con-
clude that the component of K(α,≤) · (β,≤)F at X is (K ′αX ◦ βFX ,≤).

The component of (β,≤)G ·H(α,≤) at X is calculated as follows:

HFX
HαX // HG′X

•
��

≤

βGX |HG′X // BX

•
��

HGX
βGX

// K ′GX

•
��

KGX

By Lemma 4.2, βGX |HG′X = βG′X and hence, BX = K ′G′X . So the
component of (β,≤)G · H(α,≤) at X is (βG′X ◦ HαX ,≤). Finally, note
that K ′αX ◦ βFX = βG′X ◦ HαX by ordinary middle-four for horizontal
transformations. The result of the lemma now follows.

Proposition 4.4. Horizontal and vertical composition of Λ-transformations
as defined above satisfy the middle-four interchange law.

Proof. Consider the following double functors and Λ-cells between ordered
groupoids:

G

F //

⇓(α,≤)

G //

⇓(γ,≤)

H
//

H

K //

⇓(β,≤)

L //

⇓(δ,≤)

M
//

K

We first calculate a part of ((δ,≤) · (β,≤)) ◦ ((γ,≤) · (α,≤)) and ((δ ◦ γ) ·
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(β ◦ α)) respectively, using the results from Lemma 4.2:

KFX
KαX // KG′X

•
��

KGX
KγX // KH ′X

•
��

βH′X //

≤

L′H ′X

•
��

KHX
βHX

// L′HX

•
��

LHX
δHX

//M ′HX

•
��

MHX

and

KFX
KαX // KG′X

•
��

KGX
βGX // L′GX

•
��

≤

L′γX // L′H ′X

•
��

LGX
LγX

// LH ′X

•
��

LHX
δHX

//M ′HX

•
��

MHX

Note that βH′X ◦KγX = L′γX ◦βGX by interchange for horizontal transfor-
mations. Hence, taking the remaining liftings in both diagrams will result in
the same composites.

5. The Equivalence of 2-Categories

In this section we show that there is a 2-adjunction between the 2-category of
ordered groupoids, double functors (ordered functors), and Λ-transformations
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and the 2-category of left-cancellative categories, functors and natural trans-
formations.

As was observed by Lawson and Steinberg, any ordered groupoid of the
form G(C) where C is a left-cancellative category has maximal objects in
the sense that each object is less than or equal to a unique maximal object.
We will show that when we restrict ourselves to ordered groupoids with this
property we obtain a biequivalence of 2-categories.

In our earlier introduction of the functors L and G we only gave their de-
scription on objects. We will now include their description on arrows (dou-
ble functors and functors respectively) and then extend them to 2-functors;
i.e., give their description on Λ-transformations and natural transformations
respectively.

For a double functor F : G → H, the functor L(F ) : L(G)→ L(H) is on
objects the same as F and on arrows the extension is obvious: L(F )(h,≤) =
(F (h),≤), and this is well-defined, since F sends vertical arrows to vertical
arrows, so it preserves the order relation. Now let (α,≤) : F ⇒ G be a Λ-
transformation. Then L(α,≤) : L(F )⇒ L(G) is the natural transformation
with components (αX ,≤). In order to show that this is indeed natural, let
A

h→ B′ ≤ B be an arrow in L(G). Then we need to check that the following
square commutes in L(H),

FA
F (h,≤)

//

L(α,≤)A
��

FB

L(α,≤)B
��

GA
G(h,≤)

// GB

(3)

The composition L(α,≤)B ◦ F (h,≤) is calculated as follows (inH):

FA
Fh // FB′

•

��

αB′ //

≤

G′B′

•

��

FB αB
// G′B

•

��

GB

So L(α,≤)B ◦ F (h,≤) = (αB′ ◦ Fh,≤).
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The composition G(h,≤) ◦ L(α,≤) is calculated as follows:

FA
αA // G′A

•

��

G′h //

≤

G′B′

•

��

GA
Gh
// GB′

•

��

GB

So G(h,≤) ◦ L(α,≤) = (G′h ◦ αA,≤). Now αB′ ◦ Fh = G′h ◦ αA by
horizontal naturality of α, so the naturality square (3) for L(α,≤) commutes.

It is straightforward to check that L preserves horizontal and vertical
composition of 2-cells.

In the other direction, the functor G sends a functor K : C → D be-
tween left-cancellative categories to the double functor G(K) : G(C) →
G(D) which is defined as follows. On objects, G(K) : [m : A → B] 7→
[Km : KA → KB]. On horizontal arrows, G(K)([m,n]) = [Km,Kn]. It
is straightforward to check that this is well-defined on equivalence classes
and preserves composition and identities. Furthermore, since K sends sub-
objects to subobjects, G(K) sends vertical arrows to well-defined vertical
arrows and double cells to double cells.

Now let θ : K ⇒ K ′ be a natural transformation. Then the Λ-trans-
formation G(θ) has components given by

G(θ)[m] =

(
[Km]

[Km,K′m◦θdom(m)]
// [K ′m ◦ θdom(m)] ≤ [K ′m]

)
.

To check that this is well-defined we need to show three things. First
that the assignment [m] 7→ [K ′m ◦ θdom(m)] on objects extends to a functor
G(C) → G(D); call this functor T . Second that the arrows [Km,K ′m ◦
θdom(m)] form the components of a horizontal transformation G(K) ⇒h T
and third that the [K ′m◦θdom(m)] ≤ [K ′m] form the components of a vertical
transformation T ⇒v G(K ′).

To extend the definition of T to horizontal arrows, note that for

[m,n] : [m]→ [n]
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in G(C), we have that dom(m) = dom(n), so

[m,n] 7→ [K ′m ◦ θdom(m), K
′n ◦ θdom(n)]

is well-defined as far as shape is concerned. To check that it is well-defined
on equivalence classes and that this assignment preserves the partial order,
consider the following commutative diagram in C:

A

`

��

m

vv

n

((
B C

A′m′

hh

n′

66

(4)

This gives rise to the following commutative diagram in D:

KA
θA

uu

θA
))

K`

��

K ′A

K′`

��

K′m
uu

K ′A

K′`

��

K′n
))

K ′B K ′C

K ′A′
K′m′

ii

K ′A′
K′n′

55

KA′
θA′

ii

θA′

55

(5)

This shows that when [m,n] = [m′, n′] (i.e., when ` is an isomorphism),
then T [m,n] = T [m′, n′] (since K` is then an isomorphism as well). Fur-
thermore, it shows that for any double cell

[m]
[m,n]

//

•
��

≤

[n]

•
��

[m′]
[m′,n′]

// [n′]

in G(C) (corresponding to the existence of an arbitrary arrow ` in (4)) there
is a corresponding double cell in G(D),

T [m]

•
��

T [m,n]
//

≤

T [n]

•
��

T [m′]
T [m′,n′]

// T [n′]
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(corresponding to K` in (5)). So T can be extended to a double functor
G(C)→ G(D).

The proof that the t[m] = [Km,K ′m ◦ θdom(m)] form the components of
a horizontal transformation t : G(K)⇒h T (i.e., that they satisfy horizontal
naturality and vertical functoriality) is completely straightforward. The same
is true for the proof that the T [m] ≤ K ′[m] form the components of a vertical
transformation.

We finally need to check that G thus defined preserves horizontal and
vertical composition of 2-cells. For vertical composition, suppose we have

natural transformations K θ +3K ′ θ′ +3K ′′ . Then the component of G(θ′) ·
G(θ) at [m] is calculated as follows,

[Km]
t[m]

// [K ′m ◦ θdom(m)]

•

��

[K′mθdom(m),K
′′mθ′dom(m)

θdom(m)]
//

≤

[K ′′m ◦ θ′dom(m)θdom(m)]

•

��

[K ′m]
t′
[m]

// [K ′′m ◦ θ′dom(m)]

•
��

[K ′′m]

The composition of the top two horizontal arrows is

[Km,K ′′mθ′dom(m)θdom(m)] = G(θ′ · θ),

as required.
Since vertical composition is preserved, it is sufficient to check that

whiskering is preserved in order to obtain preservation of horizontal com-
position. This is a straightforward calculation and left to the reader.

Theorem 5.1. The 2-functors L : oGpd → lcCat and G : lcCat → oGpd
define a 2-adjunction,

lcCat
G //
⊥ oGpd.
L

oo

Proof. In order to prove this we will show that the functors ηC from Section
3.2 form a strong natural transformation of 2-functors η : IdlcCat ⇒ LG and
the double functors κG from Section 3.3 form a strong natural transformation
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κ : GL⇒ IdoGpd (i.e., all naturality squares commute on the nose). Further-
more we will show that the triangle identity diagrams for η and κ commute
on the nose as well.

To consider the naturality for η, let F : C → D be a functor between
left-cancellative categories. Then the naturality square for F is

C

F

��

ηC // LG(C)
LG(F )

��

D ηD
// LG(D).

The composition LG(F ) ◦ ηC gives on objects,

A 7→ [1A] 7→ [F1A] = [1FA]

and on arrows,(
A

f−→ B
)
7→
(

[1A]
[f ]−→ [1B]

)
7→
(

[1FA]
[Ff ]−→ [1FB]

)
.

The other composition, ηD ◦ F , gives on objects,

A 7→ FA 7→ [1FA]

and on arrows,(
A

f−→ B
)
7→
(
FA

Ff−→ FB
)
7→
(

[1FA]
[Ff ]−→ [1FB]

)
.

We conclude that the naturality square commutes on the nose.
To consider the naturality for κ, let ϕ : G → H be a double functor. Then

the naturality square becomes

GL(G)

GL(ϕ)

��

κG
// G
ϕ

��

GL(H)
κH //H

To show that this square commutes, we will check what each of the compos-
ites does with a double cell in GL(G) and its domains and codomains.
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A general double cell in GL(G) is of the form

(B′, B)

•
��

≤

h // (C ′, C)

•
��

(D′, B)
k
// (E ′, C)

(6)

where
B′

•
��

≤

h // C ′

•
��

D′
k
// E ′

(7)

is a double cell in G. The double functor κG sends (6) to (7) and ϕ sends (7)
to the double cell

ϕB′

•
��

≤

ϕh
// ϕC ′

•
��

ϕD′
ϕk
// ϕE ′

(8)

inH. For the other composition, GL(ϕ) sends (6) to

(ϕB′, ϕB)

•
��

≤

ϕh
// (ϕC ′, ϕC)

•
��

(ϕD′, ϕB)
ϕk
// (ϕE ′, ϕC)

(9)

and κH sends (9) to (8) as required for commutativity.
We will now check the triangle identities,

G
Gη +3GLG

κG
��

L
ηL +3 LGL

Lκ
��

G L

For the first triangle, we check the components at a left-cancellative category
C,

G(C) GηC//GLG(C)
κGC
��

G(C)
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So we calculate the composition of double functors, (κGC)◦(GηC). A typical
double cell in G(C) is of the form,

[n]

•
��

≤

[n,m]
// [m]

•
��

[n′]
[n′,m′]

// [m′]

corresponding to a commutative diagram in C of the form,

A

v

��

n

vv

m

((
B C

A′n′

hh

m′

66

Its image under GηC is

[[1A]
[n]−→ [1B]]

[[n],[m]]
//

•
��

≤

[[1A]
[m]−→ [1C ]]

•
��

[[1A′ ]
[n′]−→ [1B]]

[[n′],[m′]]
// [[1A′ ]

[m′]−→ [1C ]]

This is the same as

([n], [1B])
[1A]

//

•
��

≤

([m], [1C ])

•
��

([n′], [1B])
[1A′ ]

// ([m′], [1C ])

Now κGC maps this to

[n]

•
��

≤

[n,m]
// [m]

•
��

[n′]
[n′,m′]

// [m′]

and we see that (κGC) ◦ (GηC) = 1C as required.
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To verify the other triangle identity, let G be an ordered groupoid. Then
an arrow of L(G) is of the form A

h−→ B ≤ C (a formal composite of a
horizontal and vertical arrow in G). Now ηL(G) send this arrow to

[1A]
[h,≤]

// [1C ]

and this is equivalent to

[ A • // A ]
[h]−→ [ B • // C ] ≤ [ C • // C ]

where the latter is seen as the formal composite of a horizontal and vertical
arrow in GL(G). Note that LκG sends this composite to the formal compos-
ite A h−→ B ≤ C, as required.

This concludes the proof of Theorem 5.1.

We write oGpdmax for the full sub-2-category of ordered groupoids with
maximal objects. (Note that the morphisms in this category need not send
maximal objects to maximal objects.) As was noticed by Lawson and Stein-
berg in Section 2.1 of [16], the functor G sends each left-cancellative cate-
gory to an object of oGpdmax. It is also easy to see that the restricted functor
L : oGpdmax → lcCat is still essentially surjective on objects. With this re-
striction we obtain an equivalence of 2-categories.

Corollary 5.2. The 2-functors L : oGpdmax → lcCat and G : lcCat→ oGpdmax
define a 2-adjoint biequivalence,

lcCat ' oGpdmax.

Proof. The components of both η and κ are essential equivalences (of cate-
gories and ordered groupoids respectively). In order to get a biequivalence
we need to show that these components have pseudo inverses. To obtain
a pseudo inverse for ηC , we need to choose a representative (m̄ : Ām →
B) for each subobject [m : A → B]. Then each arrow [h] : [m : A →
B] → [m′ : A′ → B′] has precisely one representative h̄m,m′ : Ām → Ā′m′
such that [h̄m,m′ ] : [m̄ : Ām → B] → [m̄′ : Ā′m′ → B′] is the same as
[h] : [m : A → B] → [n : A′ → B′]. So a pseudo inverse of ηC can be de-
fined by sending an object [m : A→ B] to Ām and an arrow [h] : [m]→ [m′]
to h̄m,m′ : Ām → Ā′m′ ].
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To define a pseudo inverse for κG , write Â for the maximal object with
A ≤ Â in G. Note that when A ≤ A′, then Â = Â′. Then a pseudo inverse
for κG is given by the assignment

B

•

��

h //

≤

C

•

��

7→

(B, B̂)

•

��

h //

≤

(C, Ĉ)

•

��

D
k
// E (D, B̂)

k
// (E, Ĉ)

6. Applications

6.1 Presheaves on Ordered Groupoids

In terms of double categories, presheaves on ordered groupoids as defined
in [17] can be described similarly to presheaves on ordinary categories. The
role of the category Set is now taken by the double category QSet of quartets
in the category of sets (as defined by Ehresmann): the objects of QSet are
sets, the horizontal and vertical arrows are functions and the double cells are
commutative squares in Set. Then a presheaf F on an ordered groupoid G is
a functor

F : Gop,op → QSet, (10)

which is contravariant in both the horizontal and vertical direction and sends
double cells to commutative squares. Note that by the symmetry of the
double category QSet, horizontal and vertical transformations between such
presheaf functors amount to the same thing: a collection of functions

αA : FA→ F ′A

which is natural inA both when considered with respect to horizontal arrows
and with respect to vertical arrows. The category PreSh(G) is then defined
as the category of double functors as in (10) with these transformations as
arrows.

Lawson and Steinberg [17] show that there is an isomorphism of cate-
gories

PreSh(G) ∼= PreSh(L(G)). (11)
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Furthermore, since any equivalence of categories induces an equivalence be-
tween the corresponding presheaf categories, we have

PreSh(C) ' PreSh(LG(C)),

and by combining these equivalences we obtain,

PreSh(G(C)) ' PreSh(C) and PreSh(G) ' PreSh(GL(G)). (12)

We will now provide an explicit description of the functors that give the
equivalence PreSh(G(C)) ' PreSh(C), which will be needed when proving
Proposition 6.5.

Proposition 6.1. The equivalence of categories PreSh(G(C)) ' PreSh(C)
is given by a pair of functors

PreSh(G(C))
ˇ(−)
//

PreSh(C)
˜(−)

oo

Proof. Let Φ be a presheaf on C. To define the corresponding presheaf Φ̃
on G(C), we need to make some choices. For each objects [m : A → B]
in G(C), choose a representative [m̄ : Ām → B]. For each horizontal arrow

[m : A→ B]
[m,n]

// [n : A→ C] there are unique arrows µm : A → Ām and
µn : A→ Ān and we write

[m̄]
〈µn◦µ−1

m 〉
// [n̄]

for the arrow [m,n]. For a vertical arrow [n1] • // [n2] , there is a unique
arrow vn1,n2 in C such that n̄2 = n̄1vn1,n2 , so we label the vertical arrow as

[n̄1] •
{vn1,n2} // [n̄2 ]

The reader may check that if

[n1 : X → B]

•

��

[n1,n2]
//

≤

[n2 : X → C]

•

��

[m1 : Y → B]
[m1,m2]

// [m2 : Y → C]
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is a double cell in G(C), then the corresponding square

[n̄1 : X̄n1 → B]

•{vn1,m1}
��

≤

〈µn2µ
−1
n1
〉
// [n̄2 : X̄n2 → C]

•{vn2,m2}
��

[m̄1 : Ȳm1 → B]
〈µm2µ

−1
m1
〉
// [m̄1 : Ȳm1 → C]

gives rise to a commutative square in C:

X̄n1

vn1,m1

��

µn2µ
−1
n1 // X̄n2

vn2,m2

��

Ȳm1
µm2µ

−1
m1

// Ȳm1

The corresponding presheaf Φ̃ on G(C) is then defined by

• On objects: Φ̃([m : A→ B]) = Φ(Ām);

• On a horizontal arrow [m : A→ B]
[m,n]

// [n : A→ C] , define

Φ̃([m,n]) = Φ(µmµ
−1
n ) : Φ(Ān)→ Φ(Ām).

• On a vertical arrow [m : A→ B] •
(m,m′)

// [m′ : A′ → B] , define

Φ̃((m,n)) = Φ(vm,m′) : Φ(Ā′m′)→ Φ(Ām).

We leave it to the reader to verify that this gives a well-defined presheaf on
G(C).

In the opposite direction, let Ψ be a presheaf on G(C). Then define the
presheaf Ψ̌ on C by Ψ̌(X) = Ψ[1X : X → X]. For an arrow f : X → Y in
C, we define Ψ̌(f) as the composite of the images under Ψ of the arrows in
the diagram,

[1A]
[1,f ]

// [f ]

•vf
��

[1B]
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In particular, we see that a presheaf topos is an étendue if and only if
it can be presented as presheaves on an ordered groupoid. The following
argument shows that the isomorphisms and equivalences from Equations
(11) and (12) are the components of natural transformations PreSh(−) ⇒
PreSh(L(−)) and PreSh(−)⇒ PreSh(G(−)).

Remark 6.2. The following arguments show that when ordered groupoid
morphisms and functors of left-cancellative categories correspond to each
other under the biequivalence given in Corollary 5.2, they produce suitably
isomorphic morphisms of presheaf categories.

1. By just spelling out the definitions, we see that for a morphism

M : G → G ′,

the induced functor between presheaf toposes is the same as the one
induced by its L-image, L(M) : L(G) → L(G ′), in the sense that the
following diagram commutes,

PreSh(G ′) M∗ //

∼=
��

PreSh(G)

∼=
��

PreSh(L(G ′))
(L(M))∗

// PreSh(L(G))

where the vertical isomorphisms are the ones from (11).

2. The biequivalence oGpdmax ' lcCat induces the following diagram

C F //

'
��

∼=

C ′

'
��

LG(C)
LG(F )

// LG(C ′).

Combining this with the result in the first point of this remark, we
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obtain the following,

PreSh(C ′) F ∗ //

'
��

∼=

PreSh(C)
'
��

PreSh(LG(C ′))
(LG(F ))∗

//

∼=
��

PreSh(LG(C))
∼=
��

PreSh(G(C ′))
(G(F ))∗

// PreSh(G(C))

This means that M∗ has a particular property, such as being an equivalence
of categories or being left exact, if and only if (L(M))∗ has it and similarly,
F ∗ has a property if and only if (G(F ))∗ has it.

6.2 Sheaves on Ehresmann Sites

In this section we review the concept of an Ehresmann topology and refor-
mulate it in double categorical language. An Ehresmann topology as intro-
duced by Lawson and Steinberg [17] consists of an assignment of special
order ideals (so-called covering ideals) of the poset ↓ A = {A′ ≤ A} for
each object A, satisfying a number of conditions. Since ↓ A is part of the
vertical structure of the ordered groupoid as double category, we will call
these order ideals vertical sieves.

In Lawson and Steinberg’s presentation, the condition on a Grothendieck
topology to be closed under pullback was matched by the condition that an
Ehresmann topology be closed under a notion of ‘?-conjugation’. In our
set-up we will need the following notion.

Notation 6.3. For a vertical sieve B on an object B and a diagram

A
f
// B′

•
��

B

in an ordered groupoid G, we define f ∗B to be the following vertical sieve
on A,

f ∗B =
{
A′ • //A | cod(f |A′) = B′′ with (B′′ • //B) ∈ B

}
.
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Note that cod(f |A′) = B′′ if and only if there is a double cell

A′

•

��

≤

// B′′

•

��

A
f
// B′

Definition 6.4. An Ehresmann topology on an ordered groupoid G is given
by an assignment of a collection T (A) of vertical sieves to each object A,
such that:

• (ET.1) The trivial sieve (↓ A) ∈ T (A).

• (ET.2) If B ∈ T (B) and f : A → B′ with B′ • //B , then f ∗B ∈
T (A).

• (ET.3) Let A ∈ T (A) and let B be any vertical sieve on A. If for each

C
f
// A′

•
��

A

with
(
A′ • //A

)
∈ A, f ∗B ∈ T (C), then B ∈ T (A).

Lawson and Steinberg show that Grothendieck topologies on a left-canc-
ellative category C are in one-to-one correspondence with Ehresmann topolo-
gies on G(C) and conversely, that Ehresmann topologies on an ordered
groupoid G are in one-to-one correspondence with Grothendieck topologies
on L(G). We summarize the correspondence in our notation.

Given an Ehresmann topology T on an ordered groupoid G, the corre-
sponding Grothendieck topology JT on L(G) is given by

{ Bi
mi // A′i • // A |i ∈ I} ∈ JT (A)

if and only if
{ A′i • // A |i ∈ I} ∈ T (A).
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Note that, given a Grothendieck topology J on L(G), the corresponding
Ehresmann topology TJ on G can be recovered as follows: TJ(A) consists
of those vertical sieves A such that

{A′
1A′ //A′ • //A | A′ • //A in A} ∈ J(A).

Given a Grothendieck topology J on a left-cancellative category C, the
corresponding Ehresmann topology TJ on G(C) is given by

TJ([m : A→ B]) = {[mS];S ∈ J(A)},

where
[mS] = { [mn] • // [m] |n ∈ S}.

Furthermore, given an Ehresmann topology T on G(C), the corresponding
Grothendieck topology JT is defined by:

{mi : Ai → A| i ∈ I} ∈ JT (A)

if and only if
{ [mi] • // [1A]| i ∈ I} ∈ T ([1A]).

Proposition 6.5. 1. (Lawson and Steinberg) The category of sheaves on
an Ehresmann site (G, T ) is equivalent to the category of sheaves on
(L(G), JT ).

2. The category of sheaves on a left-cancellative site (C, J) is equivalent
to the category of sheaves on (G(C), TJ).

Proof. We want to show that the maps involved in the equivalences listed at
the beginning of Section 6.1 send sheaves to sheaves. For part 1, this was
established by Lawson and Steinberg in [17, Theorem 4.4].

To prove part 2, recall the functors given in the proof of Proposition 6.1
giving an equivalence of presheaf categories

PreSh(C) ' PreSh(G(C)).

We need to show that if Φ is a sheaf, so is Φ̃ and if Ψ is a sheaf, so is Ψ̌.
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So assume that Φ is a sheaf on the site (C, J). We want to show that Φ̃ is
a sheaf on the Ehresmann site (G(C), TJ). So let

{ [hi : Ai → B] • // [h : A→ B]| i ∈ I} ∈ TJ([h])

and let ϕi ∈ Φ̃([hi]) with i ∈ I be a matching family. Then for each index i,
ϕi ∈ Φ(Āi,hi) and there is an arrow ki : Āi,hi → Āh that makes the following
triangle commute,

Āi,hi

h̄i !!

ki // Āh

h̄��

B

Then it follows that {ki| i ∈ I} ∈ J(Āh) and the ϕi form a matching family
for Φ for this cover. Since Φ is a sheaf, there is a unique amalgamation
ϕ ∈ Φ(Āh) = Φ̃([h]). This provides the required amalgamation of the
original family. The fact that it is unique follows from the fact that any other
amalgamation in Φ̃([h]) would correspond to an amalgamation of the ϕi as
matching family in Φ and we have uniqueness there. We conclude that Φ̃ is
a sheaf.

Now let Ψ be a sheaf on the Ehresmann site (G(C), TJ). We want to

show that Ψ̌ is a sheaf on the Grothendieck site (C, J). So let {Ai
fi //A| i ∈

I} ∈ J(A) and let ψi ∈ Ψ̌(Ai) = Ψ([1Ai ]) for i ∈ I be a matching family.
Then { [fi] • // [1A]} ∈ TJ([1A]) and for each index i ∈ I there is a hori-

zontal arrow [fi]
[fi,1Ai ] // [1Ai ] . Then let ψ′i = Ψ([fi, 1Ai ])(ψi) ∈ Ψ([fi]).

These form a matching family for the cover { [fi] • // [1A]} and since Ψ is
a sheaf, there is a unique amalgamation ψ ∈ Ψ([1A]) = Ψ̌(A). This also
an amalgamation for the original matching family ψi. Uniqueness follows
from the fact that amalgamations for the ψ′i in Ψ correspond precisely to
amalgamations for the ψi in Ψ̌.

We conclude that the equivalence of presheaf categories PreSh(C) '
PreSh(G(C)) restricts to an equivalence of sheaf categories Sh(C, J) '
Sh(G(C), TJ).
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6.3 Functors Between Categories of Sites

Let (C, J) and (C ′, J ′) be two Grothendieck sites. A functor F : C → C ′ in-
duces a geometric morphism ϕF : Sh(C ′, J ′) → Sh(C, J) (with (ϕF )∗ given
by composition with F ) if and only if F is both covering preserving and
covering flat [11, 12]. We recall the definition of these concepts.

Definition 6.6. For Grothendieck sites (C, J) and (C ′, J ′) a functor F : C →
C ′ is

1. covering preserving if for any covering sieve A ∈ J(A), its image is
again a covering sieve; i.e., FA ∈ J ′(FA);

2. covering flat if for each finite diagramD : I → C and any cone T over
F ◦D in C ′ with vertex U , the sieve

{h : V → U |Th factors through the F -image of some cone over D}

is a covering sieve in C ′.

Such a functor is called a morphism between Grothendieck sites.

Remark 6.7. If the sites have all finite limits we could require the functors
between them to just preserve those limits. However, our functors L and
G don’t preserve this property (for instance, when C is a site with all finite
limits, G(C) does not necessarily have products in its vertical category), so
in this case it makes more sense to work with covering-flat morphisms.

We want to use the results from Remark 6.2 and Proposition 6.5 to in-
troduce the corresponding concepts for double functors between ordered
groupoids to characterize the morphisms between Ehresmann sites that give
rise to geometric morphisms between the induced sheaf toposes. These will
then be called morphisms of Ehresmann sites.

We need the notion of a cone over a diagram in a double category. The
relevant notion for ordered groupoids is as follows.

Definition 6.8. 1. A finite diagram in a double category G consists of a
finite ordered groupoid I and a double functor D : I → G. We write

Di = D(i) for any object i in I, and Di
Dα //Di′ for the image of a

horizontal arrow i
α //i′ under D and Di

D(i,i′)
• //Di′ for the image of a

vertical arrow i • //i′ under D.

- 42 -



D. DEWOLF AND D. PRONK REPRESENTATIONS OF ETENDUES

2. An hv-cone over a diagram D : I → G consists of an object U and a
family of arrows

U
ξi // Ei

•

��

Di

for each i ∈ I such that for each horizontal arrow i
α //i′ in I, the

following triangle of horizontal arrows exists and commutes:

U
ξi

~~

ξi′

  

Ei
Dα|Ei

// Ei′

and for each vertical arrow i • //i′ , ξi = ξi′ .

With this terminology in place we can define the notion of being covering
flat for maps between Ehresmann sites as in the following definition.

Definition 6.9. A morphism of Ehresmann sites (G, T )→ (G ′, T ′) is a dou-
ble functor G → G ′ which satisfies the following two conditions:

• It is covering preserving: If A ∈ T (A) then FA ∈ T ′(FA).

• It is covering flat: For each finite diagram, D : I → G and each hv-
cone

U
ξi // Ei

•
��

FDi

with i ∈ I,

over FD in G ′, there is a covering sieve{
U ′k • //U |k ∈ K

}
∈ T (U)

such that for each k ∈ K there is an hv-cone

Tk
θik // Aik

•
��

Di

in G
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and a diagram

U ′k
hk // T ′k

•

��

FTk

such that

U ′k

ξi|U′
k // E ′i

•
��

≡
U ′k

hk // T ′k

Fθi|T ′
k // E ′i

•
��

Ei
•
��

FAik
•
��

FDi FDi

for all objects i in I.

Proposition 6.10. Given left-cancellative Grothendieck sites (C, J) and (C ′, J ′),
a functor F : C → C ′ is covering preserving if and only if its image G(F )
is covering preserving as a morphism of Ehresmann sites (G(C), TJ) →
(G(C ′), TJ ′).

Proof. Suppose first thatF is covering preserving and let { [mi] • // [m] }i∈I
be a vertical covering sieve of [m : A → B] in G(C). This provides a cov-
ering sieve {fi : Ai → A}i∈I of A in C such that, for all i ∈ I, mi =
mfi. Since F is a covering-preserving functor, the F (fi) cover F (A) and
F (mi) = F (mfi) = F (m)F (fi) in C ′ for all i ∈ I. Therefore, the data
{ [F (mi)] • // [F (m)] }i∈I are a covering vertical sieve of [F (m)] in G(C ′);
G(F ) is covering preserving.

Conversely, suppose that G(F ) is covering preserving and let {mi : Ai →
A}i∈I be a covering sieve of A in C. Then { [mi] • // [1A] }i∈I is a cov-
ering vertical sieve of [1A] in C and, since G(F ) is covering preserving,
{ [F (mi)] • // [F (1A)] }i∈I is a covering vertical sieve of [F (1A)] in G(C ′).
Therefore, the F (mi) are a covering sieve of F (A) in C ′; F is covering pre-
serving.

Proposition 6.11. Given left-cancellative Grothendieck sites (C, J) and (C ′, J ′),
if a functor F : C → C ′ is covering flat then its image G(F ) is covering flat
as a morphism of Ehresmann sites, (G(C), TJ)→ (G(C ′), TJ ′).
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Proof. Let F : (C, J) → (C ′, J ′) be covering flat. We want to show that
G(F ) : (G(C), TJ) → (G(C ′), TJ ′) is covering flat as a map of Ehresmann
sites. So let D : I → G(C) be a finite diagram. Note that in this case each

Di has the form [D′i
di //Di ] where D′i

di //Di is an arrow in C. Now let

[U ′
u−→ U ]

ξi // [E ′i
ei−→ Ei]

•
��

[FD′i
Fdi−→ FDi]

be an hv-cone over the diagram G(F ) ◦ D : I → G(C ′). This means that
Ei = FDi and there is an arrow E ′i

vi−→ FDi in C ′ such that Fdi ◦ vi = ei

and such that U ′
viξi //FDi is a cone in C ′ over the diagram FD̂ : L(I)→ C ′,

where D̂ is the adjunct of D. In particular, if Di has the form [D′i
di−→ Di]

then D̂i = D′i.
Since F is covering flat, there is a Grothendieck covering {U ′k

ϕk−→
U ′| k ∈ K} ∈ J(U ′) such that viξiϕk = F (θik)ψk where ψk : U ′k → FTk for
some cone Tk

θik−→ D′i over D̂ in C.
This gives rise to an Ehresmann covering

{[U ′k
uϕk //U ] • // [U ′ u //U ]| k ∈ K} ∈ TJ ′

with the following diagrams in G(C ′):

[U ′k
uϕk−→ U ]

[1U′
k

]
// [U ′k

ψk−→ FTk]

≤•

��

[1U′
k

]
// [U ′k

F (diθik)ψk−→ FDi]

•

��

[FTk
1FTk−→ FTk]

[1FTk ]
// [FTk

F (diθik)−→ FDi]

•

��

[FD′i
Fdi−→ FDi]
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and

[U ′k
uϕk−→ U ]

•

��

[1U′
k

]
//

≤

[U ′k
eiξiϕk−→ FDi]

•

��

[U ′
u−→ U ]

[ξi]
// [E ′i

ei−→ FDi]

•
��

[FD′i
Fdi−→ FDi]

Note that this means that [ξi]|[U ′k
uϕk−→U ]

= [1U ′k ] as in this last diagram. Further-

more, eiξiϕk = F (di)viξiϕk = F (diθik)ψk, so we have that the horizontal
arrows on the tops of these diagrams are equal as required.

We conclude that G is covering flat.

Proposition 6.12. Given Ehresmann sites (G, T ) and (G ′, T ′), if the double
functor M : G → G ′ is covering flat then its image L(M) is covering flat as
a morphism of Grothendieck sites (L(G), JT )→ (L(G ′), JT ′).

Proof. Let M : (G, T ) → (G ′, T ′) be covering flat. Now let D : J →
L(G) be a diagram, where J is a finite left-cancellative category. By the
adjunction, G a L, this induces a diagram D̂ : G(J ) → G. Now let

U
ξj
//L(M)(Dj) be a cone over L(M) ◦ D in L(G ′). Note that each ξj

has the form

U
ξ̂j
// Ej ≤ L(M)(Dj) = M(Dj).

So the ξj give rise to an hv-cone over M ◦ D̂ in G ′ with components:

U
ξ̂j

// Ej

•

��

M(Dj)

SinceM is covering flat there is an Ehresmann covering {U ′k • //U | k ∈
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K} ∈ T ′(U) such that for each k ∈ K there is an hv-cone

Tk
τk // D′j,k

•

��

Dj

in G with arrows U ′k
θk //T ′k • //MTk for each k ∈ K, such that

U ′k

ξ̂j |U′
k // E ′i,k

•

��

≡

U ′k
θk // T ′k

Mτk|T ′
k // D′′j,k

•

��

Ej

•

��

MD′j,k

•
��

M(Dj) M(Dj)

It follows that the family {U ′k ≤ U | k ∈ K} is a Grothendieck cover of
U in L(G ′) and the Tk for k ∈ K give cones in L(G) such that the cones
((ξ̂)j|U ′k ,≤) factor through their images. We conclude that L(M) is covering
flat.

Proposition 6.13. For a double functor M : (G, T ) → (G ′, T ′) between
Ehresmann sites with maximal elements, if the double functor

GL(M) : (GL(G), TJT )→ (GL(G ′), TJT ′ )

is covering flat, then M is covering flat.

Proof. Let M : G → G ′ be a double functor such that GL(M) is covering
flat. Let D : I→ G be a finite diagram, and

U
ξi // Ei

•

��

MDi

(13)
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an hv-cone in G ′. For each object Di, let D̂i be the maximal element in
the vertical category with Di • //D̂i . Then define the diagram D̄ : I →
GL(G) by D̄(i) = (Di, D̂i), D̄(i α //i′ ) = ((Di, D̂i)

Dα //(Di′ , D̂i′)),
and D̄(i • //i′ ) = ((Di, D̂i) • //(Di′ , D̂i′) = (Di′ , D̂i)). It follows that
GL(M)(D̄i) = (MDi,MD̂i). The hv-cone (13) gives rise to an hv-cone

(U,U)
ξi // (Ei,MD̂i)

•

��

(MDi,MD̂i) = MD̄i

in GL(G ′). Since GL(M) is covering flat there is an Ehresmann covering
{(U ′`, U) • //(U,U) | ` ∈ L} ∈ TJT ′ (U,U) with for each ` ∈ L an hv-cone

(T`, T̂`)
τ`,i
// (A`,i, D̂i)

•

��

(Di, D̂i)

in GL(G) with a horizontal arrow (U ′`, U)
θ` //(T ′`,MT̂`) such that

(U ′`, U)
θ` // (T ′`,MT̂`)

(Mτ`,i)|T ′
` // (A′`,i,MD̂i)

•
��

(MA`,i,MD̂i)

•

��

(MDi,MD̂i)
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is equal to

(U ′`, U)
ξi|U′

` // (E ′`,i,MD̂i)

•
��

(Ei,MD̂i)

•

��

(MDi,MD̂i)

From this data we obtain an Ehresmann covering {U ′` • //U | ` ∈ L} ∈
T (U) with for each ` ∈ L an hv-cone,

T`
τ`,i
// A`,i

•
��

Di

and a horizontal arrow U ′`
θ` //T ′` such that

U ′`
θ` // T ′`

(Mτ`,i)|T ′
` // A′`,i

•

��

≡

U ′`

ξi|U′
` // E ′i

•

��

MA`,i

•
��

Ei

•

��

MDi MDi

as required. We conclude that M is covering flat.

Proposition 6.14. A functor F : (C, J) → (C ′, J ′) is covering flat and cov-
ering preserving if and only if its image

LG(F ) : (LG(C), JTJ )→ (LG(C ′), JTJ′ )

is.

- 49 -



D. DEWOLF AND D. PRONK REPRESENTATIONS OF ETENDUES

Proof. This follows from the fact that the components of η induce isomor-
phisms between the sheaf categories as shown by Lawson and Steinberg.
There is also a straightforward direct proof in terms of diagrams and cones.

We derive from these propositions that the covering-flat covering-pres-
erving double functors between Ehresmann sites are precisely the morphisms
that give rise to geometric morphisms between the corresponding categories
of sheaves.

Theorem 6.15. A double functor M : (G, T ) → (G ′, T ′) gives rise to a ge-
ometric morphism Sh(G ′, T ′) → Sh(G, T ) if and only if it is covering pre-
serving and covering flat.

Proof. If M is covering flat and covering preserving, then L(M) is covering
flat and covering preserving by Propositions 6.10 and 6.12 and this implies
that L(M)∗ is part of a geometric morphism and hence M∗ is as well by
Remark 6.2.

Conversely, if M∗ is part of a geometric morphism, so is L(M)∗ by Re-
mark 6.2. So L(M)∗ is covering flat and covering preserving, and hence M
is covering preserving by Proposition 6.10 and GL(M) is covering flat by
Proposition 6.11. But then M is also covering flat by Proposition 6.13.

We will now write lcGsite for the 2-category of left-cancellative Gro-
thendieck sites with covering-preserving covering-flat morphisms and Esite
for the 2-category of Ehresmann sites with covering-preserving covering-flat
morphisms and Esitemax for the Ehresmann sites where each object is below
a unique maximal object. Then we conclude from the previous propositions
that

Theorem 6.16. The functors G and L induce a 2-adjoint biequivalence

lcGsite ' Esitemax.

Remark 6.17. Theorem 6.15 can now be seen as saying that the biequiva-
lence in Theorem 6.16 is a biequivalence of representations of étendues.
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6.4 The Comparison Lemma

To further investigate how morphisms of Ehresmann sites correspond to mor-
phisms between étendues, we want to consider which morphisms would in-
duce an equivalence between the corresponding étendues.

For Grothendieck sites, the Comparison Lemma [13] provides a list of
sufficient conditions on a morphism F : (C, J) → (C ′, J ′) to guarantee that
the induced geometric morphism Sh(F ) : Sh(C ′, J ′) → Sh(C, J) between
the sheaf categories is an equivalence. The comparison lemma checks the
following four conditions for maps between sites.

Definition 6.18. A morphism F : (C, J)→ (C ′, J ′) of Grothendieck sites is:

(GS.1) locally full if for each arrow g : F (C) → F (D) in C ′, there exists
a cover (ξi : Ci → C)i∈I in C with maps (fi : Ci → D)i∈I such that
g ◦ F (ξi) = F (fi) for all i ∈ I.

(GS.2) locally faithful if for each pair of maps f, f ′ : C → D in C with
F (f) = F (f ′), there exists a cover (ξi)i∈I of C with f ◦ ξi = f ′ ◦ ξi
for all i ∈ I.

(GS.3) locally surjective on objects if for each object C ′ of C ′, there exists a
covering family of the form (F (Ci)→ C ′)i∈I in C ′.

(GS.4) co-continuous if for each cover (ξi : C
′
i → F (C))i∈I in C ′, the set

of arrows f : D → C in C, such that F (f) factors through some ξi,
covers C in C.

Here is a slightly reformulated version of the Comparison Lemma (to
take into account that we do not assume that our sites are closed under finite
limits) as stated in [13].

Theorem 6.19 (Comparison Lemma for Grothendieck Sites). Let

F : (C, J)→ (C ′, J ′)

be a morphism of Grothendieck sites. If F satisfies conditions (GS.1)-(GS.3),
then the functor

F ∗ : Sh(C ′, J ′)→ Sh(C, J)

defined by composition with F is full and faithful. If F further satisfies
(GS.4), then F ∗ is an equivalence.
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Remark 6.20. The reader may wonder whether this lemma fully character-
izes morphisms that induce equivalences between the induced sheaf-topoi.
The closest result in this direction is that for essentially small sites for Gro-
thendieck topoi there is the characterization of the category of topoi being a
category of left fractions for the category of sites with site morphisms with
respect to the morphisms that satisfy the comparison lemma. Unfortunately,
this result cannot be restricted to left-cancellative sites and étendues: al-
though it is possible to represent each geometric morphism by a cospan of
morphisms of sites it is not always possible to take the middle site to be left
cancellative even if the other two are.

Our goal in this section is to give corresponding properties for morphisms
between Ehresmann sites and leverage Remark 6.2 to obtain a comparison
lemma for Ehresmann sites.

Definition 6.21. A double functorM : (G, T )→ (G ′, T ′) of Ehresmann sites
is:

(ES.1) locally full if, for any diagram M(A)
g
//B′ • //M(B) in G ′, there

exists a covering vertical sieve {Ai • //A}i∈I ∈ T (A) and a family
of horizontal arrows {fi : Ai → Bi}i∈I in G such that g|M(Ai) =
M(fi) for all i ∈ I.

(ES.2) locally faithful if, for any two horizontal arrows f : A → Bf and
g : A→ Bg with Bf • //B and Bg • //B in G andM(f) = M(g),
there exists a covering vertical sieve {Ai • //A}i∈I ∈ T (A) with
f |Ai = g|Ai for all i ∈ I.

(ES.3) locally surjective on objects if, for each object A′ of G ′, there is a

set {M(Ai)
fi //A′i • //A

′}i∈I of horizontal arrows in G ′ such that
{A′i • //A′}i∈I ∈ T ′(A′) is a covering vertical sieve of A′ in G ′.

(ES.4) co-continuous if, for all covering vertical sieves {A′i • //M(A)}i∈I ∈
T ′(M(A)) of M(A) in G ′, the set

{Aj • //A : M(Aj) • //A′i for some i ∈ I}j∈J

is a covering vertical sieve of A in G.
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Given the criteria expressed in the language of Ehresmann sites, the de-
sired Comparison Lemma for Ehresmann sites is given here.

Theorem 6.22 (Comparison Lemma for Ehresmann Sites). Let

M : (G, T )→ (G ′, T ′)

be a morphism of Ehresmann sites. If M satisfies (ES.1)–(ES.3), then the
functor M∗ : Sh(G ′, T ′) → Sh(G, T ) is full and faithful. If further M satis-
fies (ES.4), then M∗ is an equivalence.

Proof. We note that once one writes down what it means for M to satisfy
(ES.1)–(ES.3) and for L(M) to satisfy (GS.1)–(GS.3), one obtains exactly
the same diagrams, slightly differently interpreted, and we need to prove
exactly the same results on both sides. So M satisfies each of the conditions
(ES.1)–(ES.3) precisely when L(M) satisfies the corresponding condition in
(GS.1)–(GS.3).

For (ES.4) and (GS.4) the correspondence is straightforward once one
realizes that any covering in JT ′(A) in L(G ′) is generated by a covering
in T ′(A) in G ′ and a family of arrows factors through the generating set
precisely when it factors through the whole covering. So M satisfies (ES.4)
precisely when L(M) satisfies (GS.4).

The result then follows from Theorem 6.19 and Remark 6.2.
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Théorie de Topos et Cohomologie Etale des Schémas I, II, III, volume
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