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Abstract. This article provides a series-focused approach to computing Pythagorean triples. 

Introduction 

Geometric and arithmetic sequences and finite series are typically introduced in secondary 

school. Though sequences as ordered lists lend themselves to many intuitive and manageable 

applications, it is often difficult for students to put series, even finite, into context (González-

Martín et al., 2011). 

It is well known that learning mathematics is greatly enhanced and facilitated by being exposed 

to multiple perspectives of the same topic (Liljedahl et al., 2016). This is achieved primarily 

through developing problem-solving skills and techniques, which are then applied to novel 

contexts (Liljedahl et al., 2016). It is therefore desirable to have concrete and interesting 

examples of applying series, which include varied mathematical concepts and familiar contexts 

to encourage cross-pollination. Another benefit of repeated exposure to series is the 

improvement of one’s comfort level ahead of seeing them as a common concept in calculus, 

algebra, and geometry contexts (Jones, 2011). 

The authors, while discussing interesting applications of finite series, developed a construction 

which makes finite series concrete through computing Pythagorean triples; a Pythagorean triple 

is a triple (𝑥, 𝑦, 𝑧) of natural numbers satisfying the Pythagorean equation 𝑥! + 𝑦! = 𝑧!. The 

Pythagorean equation first arises geometrically as relating the length of the hypotenuse 𝑧 of a 

right triangle with its two other sides of length 𝑥 and 𝑦. Computing Pythagorean triples then has 

applications in measuring, for example, the length of an angled roof given its height and depth. 

In navigation, the Pythagorean equation gives the shortest distance 𝑧 between two points (𝑥, 0) 

and (0, 𝑦). Related to this, the Pythagorean equation is also the equation of a circle centered at 



(0,0) with radius 𝑧. Most commonly, one computes Pythagorean triples algebraically by solving 

𝑧 = *𝑥! + 𝑦! or using trigonometric relationships. Algebraic and trigonometric techniques 

naturally lean heavily on irrational numbers since they rely on the use of the square root function 

and familiarity with trigonometric functions. Irrational numbers are not intuitive, and they are 

hard to compute without using a calculator. Our construction illuminates the beauty of 

Pythagorean triples using only natural numbers while reinforcing the utility and applicability of 

finite series. 

Our construction relies primarily on the following elementary fact: for each natural number 𝑟, 𝑟! 

is the sum of the first 𝑟 odd numbers (e.g., 5! = 25 = 1 + 3 + 5 + 7 + 9 is the sum of the first 5 

odd numbers), which can be expressed as the finite series 

𝑟! =2(2𝑛 − 1).
"

#$%

 

If one has not seen this series representation of a square as a sum of odd numbers, it is an 

interesting example that provides additional exposition to applications of arithmetic sequences. It 

is crucial that one has a good grasp of this series since it will be used to compute Pythagorean 

triples by solving the equivalent equation 𝑥! = 𝑧! − 𝑦!, writing 𝑧! − 𝑦! as a difference of finite 

series. One can develop an intuition for this series geometrically. For example, Figure 1 shows 

the creation of a square with sides of length 𝑟 = 5. The square has area 𝑟! = 5! = 25 and is 

created by taking 1 square, then successively adding on L-shaped pieces with 3, 5, 7, and 9 

squares. The resulting square has area 𝑟! = 25 = 1 + 3 + 5 + 7 + 9, the sum of the first 𝑟 = 5 

odd integers. 



	

Figure	1:	The	Sum	of	the	First	5	Odd	Integers	as	Layers	of	L-Shaped	Figures	

	

In this paper, we will give a novel construction of Pythagorean triples. We then provide 

examples of using our construction to construct Pythagorean triples, which includes a discussion 

of when it fails to produce a Pythagorean triple. Finally, we will motivate the development of our 

construction and prove that it works as stated. In addition to the algebraic proof that our 

construction works, a geometric demonstration of the proof is provided. 

  



The Construction 

We provide a construction for the Pythagorean triple (𝑥, 𝑦, 𝑦 + ℓ) for any given natural number 

ℓ. This is accomplished by looking at every natural number 𝑥 greater than ℓ and performing a 

check on those 𝑥 values. If an 𝑥 value passes our check, then we can use it to define a 𝑦 value 

that fits into the Pythagorean triple. If 𝑥 fails our check, then no Pythagorean is generated for 

those values of 𝑥 and ℓ, and we move on to the next possible 𝑥 value. 

Construction.  

1. Choose a natural number ℓ. 

2. Choose 𝑥 > ℓ such that 𝑥!/ℓ and ℓ are either both even or both odd. This step can be 

sped up by checking only those 𝑥 and ℓ that are themselves either both even or both odd. 

Note that we need to only check those 𝑥 such that 𝑥!/ℓ is natural since only natural 

numbers can be even or odd. 

3. Define 𝑦 = %
!
(𝑥!/ℓ − ℓ). 

4. Finally, let 𝑧 = 𝑦 + ℓ. 

In the next section, we will show how to use this construction to create a Pythagorean triple and 

when it fails to do so. We also summarize the results of this construction in Table 1 for several 

values of ℓ and 𝑥. After gaining some intuition for this construction through examples and 

detailing the motivation of this construction, we will prove that this construction always yields a 

Pythagorean triple for appropriate values of 𝑥.  

  



Examples 

We demonstrate our construction successfully producing a Pythagorean triple. If ℓ = 2 and 𝑥 =

4, we have 𝑥!/ℓ = 16/2 = 8 which is also even. Therefore, we set 𝑦 = %
!
(𝑥!/ℓ − ℓ) =

%
!
(8 − 2) = 3. With 𝑧 = 𝑦 + ℓ = 3 + 2 = 5, we have produced the Pythagorean triple (4,3,5), 

or (3,4,5). As we will see, our construction was inspired by the difference of two series of odd 

numbers; we see that 𝑥! = 5! − 3! is the sum of the two odd numbers from the 4th odd number 

to the 5th odd number, or 7 + 9 = 16 = 4!. 

Of course, our construction can fail to produce a Pythagorean triple. The construction will fail to 

produce a Pythagorean triple most obviously when 𝑥!/ℓ is non-natural. For example, if ℓ = 3 

and 𝑥 = 5, then 𝑥!/ℓ ∉ ℕ and we cannot use our construction to produce such a Pythagorean 

triple. In fact, the proof that our construction works will show that 𝑥!/ℓ ∈ ℕ is a necessary 

condition for 𝑥 and ℓ to be part of a Pythagorean triple of the form (𝑥, 𝑦, 𝑦 + ℓ). 

The construction also fails to produce a Pythagorean triple when ℓ and &
!

ℓ
 are not both even or 

both odd. For example, if ℓ = 4 and 𝑥 = 10, then ℓ is even and &
!

ℓ
 is odd. This shows that ℓ and 

𝑥!/ℓ can differ in being even or odd, though 𝑥 and ℓ are themselves both even. Again, the proof 

that our construction works will show that ℓ and &
!

ℓ
 being both even or both odd is necessary 

since 𝑦 is half of their difference. Otherwise, their difference would be odd and 𝑦 would be non-

natural. 

Table 1 summarizes the outputs of our construction for various values of ℓ and 𝑥. Priority is 

given to primitive triples to illustrate the usefulness of this construction. Generating multiples of 



previously generated triples or their primitive factors is avoided. We encourage the reader to 

create their own Pythagorean triples by choosing some ℓ > 4 following the construction for 

several different 𝑥. One will notice that a lot of repeated or multiples of previously generated 

triples will arise. An interested reader may explore the question of novelty; that is, how common 

are repeats and how rare are new triples? 

Table 1: The output and intermediate values of our construction. 

𝓵 𝒙 𝒙𝟐/𝓵 Are 𝓵 and 𝒙𝟐/𝓵 both 

even or both odd? 

𝒚 =
𝟏
𝟐
(𝒙𝟐/𝓵 − 𝓵) 𝒛 = 𝒚 + 𝓵 Pythagorean 

Triple 

2 4 8 Yes 3 5 (4,3,5) 

2 8 32 Yes 15 17 (8,15,17) 

3 5 25
3 ∉ ℕ N/A N/A N/A N/A 

3 15 75 Yes 36 39 (15,36,39) 

3 21 147 Yes 72 75 (21,72,75) 

4 6 9 No N/A N/A N/A 

4 10 25 No N/A N/A N/A 

4 24 144 Yes 70 74 (24,70,74) 

 

  



The Explanation and Proof 

To compute Pythagorean triples, we consider the equivalent equation 𝑥! = 𝑧! − 𝑦! and write 𝑥! 

as the sum of ℓ consecutive odd integers using the finite series representation of the squares 𝑧! 

and 𝑦!. If 𝑧 = 𝑦 + 1, for example, we see that 𝑥! is a single odd integer (ℓ = 1), namely the 

(𝑦 + 1)th, or the 𝑧th, odd number: 

𝑥! = (𝑦 + 1)! − 𝑦!

= 2(2𝑛 − 1)
)*%

#$%

− 2(2𝑚 − 1)
)

+$%

= F1 + 3 +⋯+ (2𝑦 − 1) + (2(𝑦 + 1) − 1)H − F1 + 3 +⋯+ (2𝑦 − 1)H
= 2(𝑦 + 1) − 1
= 2𝑧 − 1.

 

To demonstrate this, consider the Pythagorean triple (3,4,5): 

3! = 5! − 4!

= 2(2𝑛 − 1)
,

#$%

− 2(2𝑚 − 1)
-

+$%
= (1 + 3 + 5 + 7 + 9) − (1 + 3 + 5 + 7)
= 9.

 

Remark.  Fibonacci (1225) presented a similar construction which agrees with ours in the case 

when ℓ = 1. Fibonacci’s construction says to choose a natural number 𝑦 such that 2𝑦 + 1 is a 

perfect square, call it 𝑥!. Then 𝑥 and 𝑦 are part of a Pythagorean triple since 𝑥! + 𝑦! =

(2𝑦 + 1) + 𝑦! = 𝑦! + 2𝑦 + 1 = (𝑦 + 1)! is also a perfect square and the Pythagorean triple is 

of the form (𝑥, 𝑦, 𝑦 + 1). In our notation, this is of the form (𝑥, 𝑦, 𝑦 + ℓ) with ℓ = 1. Indeed, this 

is exactly the triple produced with our construction if ℓ = 1, since 𝑦 = %
!
(𝑥!/ℓ	 − ℓ) =

%
!
(𝑥!/1	 − 1) = %

!
(𝑥! − 1), which simplifies to 2𝑦 = 𝑥! − 1, or 𝑥! = 2𝑦 + 1 as Fibonacci 



required. Our construction agrees with Fibonacci’s, though we approach the problem from 

opposite directions: Fibonacci started with a suitable 𝑦 and produced a corresponding 𝑥; we start 

with a suitable 𝑥 and produce a corresponding 𝑦. Using this perspective, our construction allows 

us to consider values ℓ > 1, too. 

That 𝑥! can be written as the sum of ℓ = 1 odd integer when 𝑧 = 𝑦 + 1 is no coincidence. 

Indeed, this approach can be generalized further to the setting when 𝑧 = 𝑦 + ℓ for any natural 

ℓ ∈ ℕ. The computations for arbitrary ℓ are somewhat abstract in nature and readers may find 

them difficult to follow. To aid understanding, we first provide a concrete example. 

Example 2.  Consider the Pythagorean triple (8,15,17) = (8,15,15 + 2) with ℓ = 2. Then, 

𝑧! = 17! = 2(2𝑛 − 1)
%.

#$%
= 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33

 

is the sum of the first 17 odd numbers and 

𝑦! = 15! = 2(2𝑛 − 1)
%,

#$%
= 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29

 

is the sum of the first 15 odd numbers. Our calculation then implies that 

𝑥! = 𝑧! − 𝑦! = 17! − 15! = 2(2𝑛 − 1)
%.

#$%

−2(2𝑛 − 1)
%,

#$%

= 31 + 33 = 64 = 8!; 

𝑥! = 17! − 15! is the sum of the ℓ = 2 odd numbers starting at the 16th odd number and 

ending at the 17th odd number: 𝑥! = 31 + 33. 



With this example to help guide our understanding, we suppose that ℓ is any natural number. In 

this case, we have 

𝑥! = 𝑧! − 𝑦!

= 2(2𝑛 − 1)
/

#$%

−2(2𝑛 − 1)
)

#$%

= 2(2𝑛 − 1)
)*ℓ

#$%

−2(2𝑛 − 1)
)

#$%

					(since	𝑧 = 𝑦 + ℓ)

= P 2 (2𝑛 − 1)
)*ℓ

#$)*%

+2(2𝑛 − 1)
)

#$%

Q

RSSSSSSSSSTSSSSSSSSSU
break	up	the	sum	from	1	to	)*ℓ	into	two	pieces

−2(2𝑛 − 1)
)

#$%

	

= 2 (2𝑛 − 1)
)*ℓ

#$)*%

					Vcancel	the	zero	pair	of	2(2𝑛 − 1)
)

#$%

	termsa

= [2(𝑦 + 1) − 1] + [2(𝑦 + 2) − 1] + ⋯+ [2(𝑦 + ℓ) − 1]

 

Therefore, our problem reduces to finding ℓ = 𝑧 − 𝑦 consecutive odd numbers which sum to 𝑥!. 

We note that 𝑥!/ℓ is a natural number since ℓ is necessarily a factor of 𝑥!. This can be shown as 

below: 

𝑥! = [2(𝑦 + 1) − 1] + [2(𝑦 + 2) − 1] + ⋯+ [2(𝑦 + ℓ) − 1]
= [2𝑦 + 1] + [2𝑦 + 3] + ⋯+ [2𝑦 + (2ℓ − 1)]
= [2𝑦 + 2𝑦 +⋯+ 2𝑦]deeeeefeeeeeg

ℓ	copies

+ [1 + 3 +⋯+ (2ℓ − 1)]

= ℓ ⋅ 2𝑦 +2(2𝑛 − 1)
ℓ

#$%
= ℓ ⋅ 2𝑦 + ℓ!

= ℓ(2𝑦 + ℓ)

 

Thus we can write &
!

ℓ
= ℓ(!)*ℓ)

ℓ
= 2𝑦 + ℓ, implying that ℓ and &

!

ℓ
 are either both even or both 

odd since their difference &
!

ℓ
− ℓ = 2𝑦 is even. This further implies that 𝑥! and ℓ!, and thus 𝑥 



and ℓ, are either both even or both odd since their difference 

𝑥! − ℓ! = (ℓ ⋅ 2y + ℓ!) − ℓ! = ℓ ⋅ 2𝑦 = 2(𝑦ℓ) 

is always even. Though 𝑥 and ℓ being both even or both odd is a necessary condition for &
!

ℓ
 and ℓ 

to be either both even or both odd, we warn the reader that this is not a sufficient condition. For 

example, when ℓ = 4 and 𝑥 = 6, Table 1 shows that this does not result in a Pythagorean triple. 

Construction. Following this discussion, we restate and prove our construction: 

1. Choose a natural number ℓ. 

2. Choose 𝑥 > ℓ such that 𝑥!/ℓ and ℓ are either both even or both odd. This step can be 

sped up by checking only those 𝑥 and ℓ that are themselves either both even or both odd. 

Note that we need to only check those 𝑥 such that 𝑥!/ℓ is natural since only natural 

numbers can be even or odd. 

3. Define 𝑦 = %
!
(𝑥!/ℓ − ℓ). 

4. Finally, let 𝑧 = 𝑦 + ℓ. 

Claim.  This construction yields a Pythagorean triple. 

Proof. If 𝑥 is chosen such that 𝑥!/ℓ and ℓ are either both even or both odd, the difference 

𝑥!/ℓ − ℓ is even and 𝑦 = %
!
(𝑥!/ℓ − ℓ) is a natural number. Finally, letting 𝑧 = 𝑦 + ℓ, we have 

𝑧! − 𝑦! = (𝑦 + ℓ)! − 𝑦!

= 𝑦! + 2𝑦ℓ + ℓ! − 𝑦!

= 2𝑦ℓ + ℓ!

= 2 ⋅
1
2
(𝑥!/ℓ − ℓ)ℓ + ℓ!

= (𝑥! − ℓ!) + ℓ!

= 𝑥!.

 



That is, 𝑧! − 𝑦! = 𝑥!, which can be re-arranged to 𝑥! + 𝑦! = 𝑧!, the Pythagorean Theorem. 

☐ 

We end this paper with a brief discussion on how to understand this construction geometrically. 

Recall that Figure 1 shows how 𝑟! = 25 is the sum of the first 𝑟 = 5 odd integers by layering on 

L-shaped figures of increasing size. Figure 2(a) shows how this is generalized to a square of side 

𝑦 and how this square can be extended to a square of side 𝑧 = 𝑦 + ℓ by adding a sequence of ℓ 

one-block-thick L-shaped figures. For demonstration, we have chosen 𝑦 = 3  and ℓ = 3. 

(a) 	 (b) 	

Figure	2:	Graphically	Representing	Series	of	Odd	Integers	by	Creating	Squares 
 

Figure 2(b) shows that the area added to go from 𝑦! to (𝑦 + ℓ)! comprises two rectangles and a 

square. The two rectangles each have area 𝑦ℓ and the square ℓ!. It is instructive to see that the 

square of area ℓ! is made up of pieces of 1, 3, … , 2ℓ	– 	1. This is a more abstract application of 

the odd-squares series that motivated geometrically in Figure 1. Hence, the total area added is 

2𝑦ℓ + ℓ! and we have (2𝑦ℓ + ℓ!) + 𝑦! = (𝑦 + ℓ)!. By the Pythagorean Theorem, it follows 

that 𝑥! = 2𝑦ℓ + ℓ!. One can then pick values of 𝑦 and ℓ and determine the value of 𝑥 that 

satisfies 𝑥! = 	2𝑦ℓ + ℓ!. This approach yields all solutions (𝑥, 𝑦, 𝑦 + ℓ) where 𝑦 and ℓ are 



natural numbers and 𝑥 is either a natural or irrational number (Dickson, 1894). However, to 

determine whether a number is a perfect square is a tedious process, especially for larger values 

of 𝑥!. It is possible to approach the problem from the other side and start instead with 𝑥. By 

determining the relationship between 𝑥 and ℓ, that	𝑥! 	= ℓ(ℓ + 2𝑦), our construction’s 

requirements are immediate: (i) 𝑥	 > ℓ,  (ii) 𝑥 and ℓ are either both even or both odd, and (iii) 

𝑥!/ℓ and ℓ are both even or both odd. Choosing 𝑥 and ℓ that meet these criteria yields 𝑦 that 

produces a Pythagorean triple (𝑥, 𝑦, 𝑦 + ℓ) where 𝑥 and ℓ are natural numbers and 𝑦 is a rational 

number (DeWolf & Viswanathan, 2022). It is easier to determine if 𝑥! 	− ℓ! can be divided by ℓ 

than it is to determine if 2𝑦ℓ	 + ℓ! is a perfect square. 

Conclusions 

Pythagorean triples and the Pythagorean Theorem play a natural role in applications across 

science, engineering, and mathematics. For example, a Pythagorean triple gives the discrete 

distance between two integral points in space and can be used to find the magnitude of vectors 

which often correspond to velocities in physics. Given that distances and magnitudes are also 

inherently geometric, it is not surprising that the generation of Pythagorean triples can be 

geometrically motivated. In this paper, we made this connection explicit by using a finite series 

that simultaneously represents both the geometric and algebraic perspectives. Resulting is a 

novel construction motivated by the finite series representation of a square 𝑟! as the sum of the 

first 𝑟 odd natural numbers. This perspective proves to be fruitful in the sense that it generalizes 

Fibonacci’s previously known construction of Pythagorean triples and illuminates the 

relationship between abstract mathematical concepts and real-world applications. 
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